KB-VQA-E / app.py
m7mdal7aj's picture
Update app.py
819a53d verified
raw
history blame
5.74 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
from PIL import Image
import torch.nn as nn
from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources
def answer_question(image, question, model, processor):
image = Image.open(image)
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16)
if isinstance(model, torch.nn.DataParallel):
# Use the 'module' attribute to access the original model
out = model.module.generate(**inputs, max_length=100, min_length=20)
else:
out = model.generate(**inputs, max_length=100, min_length=20)
answer = processor.decode(out[0], skip_special_tokens=True).strip()
return answer
# Set up the sidebar navigation
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", ])
# Set up the main page content based on navigation selection
if selection == "Home":
st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
st.write("Home page content goes here...")
# You can include more content for the home page here
elif selection == "Dissertation Report":
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Example to display a link to a PDF
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
elif selection == "Evaluation Results":
st.title("Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Dataset Analysis":
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Run Inference":
st.title("Run Inference")
st.write("This page allows you to run the space for inference.")
# You would include your inference code here
# For example, if you have a form to collect user input for the model:
user_input = st.text_input("Enter your text here...")
if st.button("Run"):
# Call your model inference function
# result = run_inference(user_input)
# st.write(result)
pass # Replace pass with your inference code
# Other pages and functionality would be added in a similar manner.
st.title("Image Question Answering")
# File uploader for the image
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
# Text input for the question
question = st.text_input("Enter your question about the image:")
if st.button('Generate Caption'):
free_gpu_resources()
if image is not None:
# Display the image
st.image(image, use_column_width=True)
caption = get_caption(image)
st.write(caption)
free_gpu_resources()
else:
st.write("Please upload an image and enter a question.")
if st.button("Get Answer"):
if image is not None and question:
# Display the image
st.image(image, use_column_width=True)
# Get and display the answer
model, processor = load_caption_model()
answer = answer_question(image, question, model, processor)
st.write(answer)
else:
st.write("Please upload an image and enter a question.")
# Object Detection
# Object Detection UI in the sidebar
st.sidebar.title("Object Detection")
# Dropdown to select the model
detect_model = st.sidebar.selectbox("Choose a model for object detection:", ["detic", "yolov5"])
# Slider for threshold with default values based on the model
threshold = st.sidebar.slider("Select Detection Threshold", 0.1, 0.9, 0.2 if detect_model == "yolov5" else 0.4)
# Button to trigger object detection
detect_button = st.sidebar.button("Detect Objects")
def perform_object_detection(image, model_name, threshold):
"""
Perform object detection on the given image using the specified model and threshold.
Args:
image (PIL.Image): The image on which to perform object detection.
model_name (str): The name of the object detection model to use.
threshold (float): The threshold for object detection.
Returns:
PIL.Image, str: The image with drawn bounding boxes and a string of detected objects.
"""
# Perform object detection and draw bounding boxes
processed_image, detected_objects = detect_and_draw_objects(image, model_name, threshold)
return processed_image, detected_objects
# Check if the 'Detect Objects' button was clicked
if detect_button:
if image is not None:
# Open the uploaded image
try:
image = Image.open(image)
# Display the original image
st.image(image, use_column_width=True, caption="Original Image")
# Perform object detection
processed_image, detected_objects = perform_object_detection(image, detect_model, threshold)
# Display the image with detected objects
st.image(processed_image, use_column_width=True, caption="Image with Detected Objects")
# Display the detected objects as text
st.write(detected_objects)
except Exception as e:
st.error(f"Error loading image: {e}")
else:
st.write("Please upload an image for object detection.")