File size: 14,746 Bytes
125214f
 
 
 
 
 
7e54217
6c73039
8eb0316
125214f
 
 
a984aef
125214f
1812270
eff41fa
40d77a8
125214f
 
1948116
7c3b785
7337830
 
 
 
 
571fea7
7c3b785
7337830
571fea7
7c3b785
 
 
40d77a8
8eb0316
1948116
571fea7
7c3b785
571fea7
7c3b785
 
571fea7
 
 
 
7c3b785
8eb0316
7c3b785
7337830
1948116
6657600
7337830
1948116
0b0cffd
1948116
571fea7
 
 
8eb0316
 
 
571fea7
7337830
d4b85b8
7c3b785
 
1948116
5667733
 
29f316e
7337830
df65239
1948116
571fea7
 
 
8eb0316
 
 
571fea7
7337830
d4b85b8
1948116
df65239
1948116
7337830
 
571fea7
 
 
 
 
8eb0316
 
 
7337830
8eb0316
 
571fea7
7337830
0f0c882
 
 
 
8eb0316
571fea7
 
 
 
 
8eb0316
 
7337830
8eb0316
 
571fea7
7337830
0f0c882
 
7337830
 
f366249
7337830
 
f366249
 
 
0f0c882
 
8eb0316
571fea7
 
 
 
 
8eb0316
 
7337830
8eb0316
 
571fea7
7337830
0f0c882
 
 
1d707c1
87fb74c
 
7337830
 
571fea7
 
8eb0316
571fea7
 
8eb0316
 
7337830
8eb0316
 
571fea7
7337830
0f0c882
7337830
 
 
 
571fea7
 
 
 
 
7337830
0f0c882
7337830
0f0c882
f283cf3
7337830
571fea7
8eb0316
571fea7
 
7337830
 
8eb0316
571fea7
 
 
 
 
8eb0316
7337830
8eb0316
 
571fea7
7337830
094a401
7337830
 
0f0c882
7337830
 
0f0c882
 
571fea7
 
 
 
7337830
 
 
 
 
8eb0316
 
571fea7
7337830
0f0c882
 
7337830
7316948
0bac0de
82e0944
256561a
 
0f0c882
7337830
8eb0316
7c3b785
7337830
 
7c3b785
571fea7
7337830
8eb0316
 
 
 
 
7337830
3b61686
 
87db907
3b61686
 
7337830
3eeb25f
61382de
7337830
 
3eeb25f
 
7337830
 
a6451e7
 
 
61382de
5600c91
c7b6d08
5600c91
 
7337830
 
5600c91
e36aa58
5600c91
3394a6e
5600c91
3394a6e
3eeb25f
 
87db907
3eeb25f
 
3394a6e
7337830
 
3394a6e
c45c1b1
7337830
904c909
 
7337830
c791f22
904c909
802de9d
c791f22
 
904c909
 
 
c791f22
904c909
802de9d
7337830
904c909
7337830
c791f22
7e54217
3eeb25f
deb2356
7337830
 
 
3b98e5e
 
 
33dd05f
 
3eeb25f
2111435
6b844f6
7e54217
bb9ebd1
7337830
6b844f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
import time
from typing import Tuple, Dict, List, Union
from streamlit.delta_generator import DeltaGenerator
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.detector.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.state_manager import StateManager
from my_model.config import inference_config as config


class InferenceRunner(StateManager):
    """
    Manages the user interface and interactions for running inference using the Streamlit-based Knowledge-Based Visual
    Question Answering (KBVQA) application.

    This class handles image uploads, displays sample images, and facilitates the question-answering process using the
    KBVQA model.
    Inherits from the StateManager class.
    """

    def __init__(self) -> None:
        """
        Initializes the InferenceRunner instance, setting up the necessary state.
        """

        super().__init__()

    def answer_question(self, caption: str, detected_objects_str: str, question: str) -> Tuple[str, int]:
        """
        Generates an answer to a user's question based on the image's caption and detected objects.

        Args:
            caption (str): Caption generated for the image.
            detected_objects_str (str): String representation of detected objects in the image.
            question (str): User's question about the image.

        Returns:
            Tuple[str, int]: A tuple containing the answer to the question and the prompt length.
        """

        free_gpu_resources()
        answer = st.session_state.kbvqa.generate_answer(question, caption, detected_objects_str)
        prompt_length = st.session_state.kbvqa.current_prompt_length
        free_gpu_resources()
        return answer, prompt_length

    def display_sample_images(self) -> None:
        """
        Displays sample images as clickable thumbnails for the user to select.

        Returns:
            None
        """

        self.col1.write("Choose from sample images:")
        cols = self.col1.columns(len(config.SAMPLE_IMAGES))
        for idx, sample_image_path in enumerate(config.SAMPLE_IMAGES):
            with cols[idx]:
                image = Image.open(sample_image_path)
                image_for_display = self.resize_image(sample_image_path, 80, 80)
                st.image(image_for_display)
                if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx + 1}'):
                    self.process_new_image(sample_image_path, image)

    def handle_image_upload(self) -> None:
        """
        Provides an image uploader widget for the user to upload their own images.

        Returns:
            None
        """

        uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
        if uploaded_image is not None:
            self.process_new_image(uploaded_image.name, Image.open(uploaded_image))

    def display_image_and_analysis(self, image_key: str, image_data: Dict, nested_col21: DeltaGenerator,
                                   nested_col22: DeltaGenerator) -> None:
        """
        Displays the uploaded or selected image and provides an option to analyze the image.

        Args:
            image_key (str): Unique key identifying the image.
            image_data (Dict): Data associated with the image.
            nested_col21 (DeltaGenerator): Column for displaying the image.
            nested_col22 (DeltaGenerator): Column for displaying the analysis button.

        Returns:
            None
        """

        image_for_display = self.resize_image(image_data['image'], 600)
        nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
        self.handle_analysis_button(image_key, image_data, nested_col22)

    def handle_analysis_button(self, image_key: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
        """
        Provides an 'Analyze Image' button and processes the image analysis upon click.

        Args:
            image_key (str): Unique key identifying the image.
            image_data (Dict): Data associated with the image.
            nested_col22 (DeltaGenerator): Column for displaying the analysis button.

        Returns:
            None
        """

        if not image_data['analysis_done'] or self.settings_changed or self.confidance_change:
            nested_col22.text("Please click 'Analyze Image'..")
            analyze_button_key = f'analyze_{image_key}_{st.session_state.detection_model}_' \
                                 f'{st.session_state.confidence_level}'
            with nested_col22:
                if st.button('Analyze Image', key=analyze_button_key, on_click=self.disable_widgets,
                             disabled=self.is_widget_disabled):
                    with st.spinner('Analyzing the image...'):
                        caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'])
                        self.update_image_data(image_key, caption, detected_objects_str, True)
            st.session_state['loading_in_progress'] = False

    def handle_question_answering(self, image_key: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
        """
        Manages the question-answering interface for each image.

        Args:
            image_key (str): Unique key identifying the image.
            image_data (Dict): Data associated with the image.
            nested_col22 (DeltaGenerator): Column for displaying the question-answering interface.

        Returns:
            None
        """

        if image_data['analysis_done']:
            self.display_question_answering_interface(image_key, image_data, nested_col22)

        if self.settings_changed or self.confidance_change:
            nested_col22.warning("Confidence level changed, please click 'Analyze Image' each time you change it.")

    def display_question_answering_interface(self, image_key: str, image_data: Dict,
                                             nested_col22: DeltaGenerator) -> None:
        """
        Displays the interface for question answering, including sample questions and a custom question input.

        Args:
            image_key (str): Unique key identifying the image.
            image_data (Dict): Data associated with the image.
            nested_col22 (DeltaGenerator): The column where the interface will be displayed.

        Returns:
            None
        """

        sample_questions = config.SAMPLE_QUESTIONS.get(image_key, [])
        selected_question = nested_col22.selectbox("Select a sample question or type your own:",
                                                   ["Custom question..."] + sample_questions,
                                                   key=f'sample_question_{image_key}')

        # Display custom question input only if "Custom question..." is selected
        question = selected_question
        if selected_question == "Custom question...":
            custom_question = nested_col22.text_input("Or ask your own question:", key=f'custom_question_{image_key}')
            question = custom_question

        self.process_question(image_key, question, image_data, nested_col22)

        qa_history = image_data.get('qa_history', [])
        for num, (q, a, p) in enumerate(qa_history):
            nested_col22.text(f"Q{num + 1}: {q}\nA{num + 1}: {a}\nPrompt Length: {p}\n")

    def process_question(self, image_key: str, question: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
        """
        Processes the user's question, generates an answer, and updates the question-answer history.
        This method checks if the question is new or if settings have changed, and if so, generates an answer using the
        KBVQA model.
        It then updates the question-answer history for the image.

        Args:
            image_key (str): Unique key identifying the image.
            question (str): The question asked by the user.
            image_data (Dict): Data associated with the image.
            nested_col22 (DeltaGenerator): The column where the answer will be displayed.

        Returns:
            None
        """

        qa_history = image_data.get('qa_history', [])
        if question and (
                question not in [q for q, _, _ in qa_history] or self.settings_changed or self.confidance_change):
            if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
                answer, prompt_length = self.answer_question(image_data['caption'], image_data['detected_objects_str'],
                                                             question)
                self.add_to_qa_history(image_key, question, answer, prompt_length)

    def image_qa_app(self) -> None:
        """
        Main application interface for image-based question answering.

        This method orchestrates the display of sample images, handles image uploads, and facilitates the
        question-answering process.
        It iterates through each image in the session state, displaying the image and providing interfaces for image
        analysis and question answering.

        Returns:
            None
        """

        self.display_sample_images()
        self.handle_image_upload()
        # self.display_session_state(self.col1)
        with self.col2:
            for image_key, image_data in self.get_images_data().items():
                with st.container():
                    nested_col21, nested_col22 = st.columns([0.65, 0.35])
                    self.display_image_and_analysis(image_key, image_data, nested_col21, nested_col22)
                    self.handle_question_answering(image_key, image_data, nested_col22)

    def run_inference(self) -> None:
        """
        Sets up widgets and manages the inference process, including model loading and reloading, based on user
        interactions.

        This method orchestrates the overall flow of the inference process.

        Returns:
            None
        """

        self.set_up_widgets()  # Inherent from the StateManager Class

        load_fine_tuned_model = False
        fine_tuned_model_already_loaded = False
        reload_kbvqa = False
        reload_detection_model = False
        force_reload_full_model = False

        # self.update_prev_state()
        st.session_state.button_label = (
            "Reload Model" if (self.is_model_loaded and
                               st.session_state.kbvqa.detection_model != st.session_state['detection_model']) or
                              (st.session_state['previous_state']['method'] is not None and
                               st.session_state['method'] != st.session_state['previous_state']['method'])
            else "Load Model"
        )
                #if self.is_model_loaded and self.settings_changed:
        if st.session_state.button_label == "Reload Model":
            self.col1.warning("Model settings have changed, please reload the model.. ")

        with self.col1:
            if st.session_state.method == "7b-Fine-Tuned Model" or st.session_state.method == "13b-Fine-Tuned Model":
                with st.container():
                    nested_col11, nested_col12 = st.columns([0.5, 0.5])
                    if nested_col11.button(st.session_state.button_label, on_click=self.disable_widgets,
                                           disabled=self.is_widget_disabled):
                        if st.session_state.button_label == "Load Model":
                            if self.is_model_loaded:
                                free_gpu_resources()
                                fine_tuned_model_already_loaded = True
                            else:
                                load_fine_tuned_model = True
                        elif st.session_state.button_label == "Reload Model" and st.session_state['method'] != \
                                st.session_state['previous_state']['method']:  # check if the model size have changed
                            force_reload_full_model = True
                        elif (self.is_model_loaded and st.session_state.kbvqa.detection_model != 
                              st.session_state['detection_model']):
                            reload_detection_model = True
                    if nested_col12.button("Force Reload", on_click=self.disable_widgets,
                                           disabled=self.is_widget_disabled):
                        force_reload_full_model = True
                if load_fine_tuned_model:
                    t1 = time.time()
                    free_gpu_resources()
                    self.load_model()
                    st.session_state['time_taken_to_load_model'] = int(time.time() - t1)
                    st.session_state['loading_in_progress'] = False
                elif fine_tuned_model_already_loaded:
                    free_gpu_resources()
                    self.col1.text("Model already loaded and no settings were changed:)")
                    st.session_state['loading_in_progress'] = False
                elif reload_detection_model:
                    free_gpu_resources()
                    self.reload_detection_model()
                    st.session_state['loading_in_progress'] = False
                elif force_reload_full_model:
                    free_gpu_resources()
                    t1 = time.time()
                    self.force_reload_model()
                    st.session_state['time_taken_to_load_model'] = int(time.time() - t1)
                    st.session_state['loading_in_progress'] = False
                    st.session_state['model_loaded'] = True

            elif st.session_state.method == "Vision-Language Embeddings Alignment":
                self.col1.warning(
                    f'Model using {st.session_state.method} is desgined but requires large scale data and multiple '
                    f'high-end GPUs, implementation will be explored in the future.')

            st.write(st.session_state['method'])
            st.write(st.session_state['previous_state']['method'])
            if st.session_state['kbvqa'] is not None:
                st.write(st.session_state['kbvqa'].kbvqa_model_name)

        if self.is_model_loaded:
            free_gpu_resources()
            st.session_state['loading_in_progress'] = False
            self.update_prev_state()
            self.image_qa_app()  # this is the main Q/A Application