Spaces:
Sleeping
Sleeping
A newer version of the Streamlit SDK is available:
1.41.1
Flask REST API
REST APIs are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from PyTorch Hub.
Requirements
Flask is required. Install with:
$ pip install Flask
Run
After Flask installation run:
$ python3 restapi.py --port 5000
Then use curl to perform a request:
$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
The model inference results are returned as a JSON response:
[
{
"class": 0,
"confidence": 0.8900438547,
"height": 0.9318675399,
"name": "person",
"width": 0.3264600933,
"xcenter": 0.7438579798,
"ycenter": 0.5207948685
},
{
"class": 0,
"confidence": 0.8440024257,
"height": 0.7155083418,
"name": "person",
"width": 0.6546785235,
"xcenter": 0.427829951,
"ycenter": 0.6334488392
},
{
"class": 27,
"confidence": 0.3771208823,
"height": 0.3902671337,
"name": "tie",
"width": 0.0696444362,
"xcenter": 0.3675483763,
"ycenter": 0.7991207838
},
{
"class": 27,
"confidence": 0.3527112305,
"height": 0.1540903747,
"name": "tie",
"width": 0.0336618312,
"xcenter": 0.7814827561,
"ycenter": 0.5065554976
}
]
An example python script to perform inference using requests is given in example_request.py