Spaces:
Build error
Build error
File size: 14,303 Bytes
985ef3e 5800f83 abf93bc 985ef3e 3a03f47 985ef3e 22f7397 7bf4167 22f7397 7c5f9b0 22f7397 7bf4167 fc74e8d 955747f 4d14899 955747f a0eb5f6 a2d12d3 a0eb5f6 184fac5 4d14899 955747f 4d14899 184fac5 4d14899 c985084 4d14899 c985084 4d14899 c985084 4d14899 c985084 4d14899 955747f c985084 4d14899 c985084 4d14899 184fac5 955747f 4d14899 c985084 4d14899 fc74e8d a0eb5f6 4ea4863 a0eb5f6 b57342d a0eb5f6 4419e34 a0eb5f6 4ea4863 a0eb5f6 d68fabe 88d941f c65d57e 4d14899 c65d57e 4d14899 c65d57e 4d14899 c65d57e 4d14899 c65d57e 4d14899 d68fabe 955747f 394512b a0eb5f6 88d941f 394512b 6781558 58962c9 d68fabe 58962c9 394512b 88d941f 394512b 58962c9 88d941f 58962c9 394512b a0eb5f6 22f7397 fc74e8d 955747f fc74e8d 394512b 05560e1 394512b fc74e8d 58962c9 4f40d11 d68fabe 394512b d68fabe 394512b d68fabe 394512b d68fabe 394512b fc74e8d 394512b 05560e1 fc74e8d 955747f 7bf4167 22f7397 394512b d68fabe 7bf4167 22f7397 955747f d68fabe 955747f c65d57e d68fabe c65d57e d68fabe 394512b 955747f c65d57e e365271 53c4d50 955747f 4566fdb 53c4d50 611f1cc 53c4d50 4566fdb 53c4d50 4566fdb 955747f 53c4d50 955747f 22f7397 7bf4167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import os
#os.system("pip uninstall -y gradio")
#os.system("pip install --upgrade gradio")
#os.system("pip install datamapplot==0.3.0")
#os.system("pip install numba==0.59.1")
#os.system("pip install umap-learn==0.5.6")
#os.system("pip install pynndescent==0.5.12")
import spaces
from pathlib import Path
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uvicorn
import gradio as gr
from datetime import datetime
import sys
gr.set_static_paths(paths=["static/"])
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path('./static')
static_dir.mkdir(parents=True, exist_ok=True)
# mount FastAPI StaticFiles server
app.mount("/static", StaticFiles(directory=static_dir), name="static")
# Gradio stuff
import datamapplot
import numpy as np
import requests
import io
import pandas as pd
from pyalex import Works, Authors, Sources, Institutions, Concepts, Publishers, Funders
from itertools import chain
from compress_pickle import load, dump
from urllib.parse import urlparse, parse_qs
import re
from transformers import AutoTokenizer
from adapters import AutoAdapterModel
import torch
from tqdm import tqdm
from numba.typed import List
import pickle
import pynndescent
import umap
def openalex_url_to_pyalex_query(url):
"""
Convert an OpenAlex search URL to a pyalex query.
Args:
url (str): The OpenAlex search URL.
Returns:
tuple: (Works object, dict of parameters)
"""
parsed_url = urlparse(url)
query_params = parse_qs(parsed_url.query)
# Initialize the Works object
query = Works()
# Handle filters
if 'filter' in query_params:
filters = query_params['filter'][0].split(',')
for f in filters:
if ':' in f:
key, value = f.split(':', 1)
if key == 'default.search':
query = query.search(value)
else:
query = query.filter(**{key: value})
# Handle sort
if 'sort' in query_params:
sort_params = query_params['sort'][0].split(',')
for s in sort_params:
if s.startswith('-'):
query = query.sort(**{s[1:]: 'desc'})
else:
query = query.sort(**{s: 'asc'})
# Handle other parameters
params = {}
for key in ['page', 'per-page', 'sample', 'seed']:
if key in query_params:
params[key] = query_params[key][0]
return query, params
def invert_abstract(inv_index):
if inv_index is not None:
l_inv = [(w, p) for w, pos in inv_index.items() for p in pos]
return " ".join(map(lambda x: x[0], sorted(l_inv, key=lambda x: x[1])))
else:
return ' '
def get_pub(x):
try:
source = x['source']['display_name']
if source not in ['parsed_publication','Deleted Journal']:
return source
else:
return ' '
except:
return ' '
#def query_records(search_term):
# # Fetch records based on the search term in the abstract!
# query = Works().search([search_term])
# query_length = Works().search([search_term]).count()
# records = []
# #total_pages = (query_length + 199) // 200 # Calculate total number of pages
# progress=gr.Progress()
# for i, record in progress.tqdm(enumerate(chain(*query.paginate(per_page=200)))):
# records.append(record)
# # Calculate progress from 0 to 0.1
# #achieved_progress = min(0.1, (i + 1) / query_length * 0.1)
# # Update progress bar
# #progress(achieved_progress, desc="Getting queried data...")
# records_df = pd.DataFrame(records)
# records_df['abstract'] = [invert_abstract(t) for t in records_df['abstract_inverted_index']]
# records_df['parsed_publication'] = [get_pub(x) for x in records_df['primary_location']]
# records_df['parsed_publication'] = records_df['parsed_publication'].fillna(' ')
# records_df['abstract'] = records_df['abstract'].fillna(' ')
# records_df['title'] = records_df['title'].fillna(' ')
# return records_df
################# Setting up the model for specter2 embeddings ###################
#device = torch.device("mps" if torch.backends.mps.is_available() else "cuda")
#print(f"Using device: {device}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_aug2023refresh_base')
model = AutoAdapterModel.from_pretrained('allenai/specter2_aug2023refresh_base')
@spaces.GPU(duration=60)
def create_embeddings(texts_to_embedd):
# Set up the device
print(len(texts_to_embedd))
# Load the proximity adapter and activate it
model.load_adapter("allenai/specter2_aug2023refresh", source="hf", load_as="proximity", set_active=True)
model.set_active_adapters("proximity")
model.to(device)
def batch_generator(data, batch_size):
"""Yield consecutive batches of data."""
for i in range(0, len(data), batch_size):
yield data[i:i + batch_size]
def encode_texts(texts, device, batch_size=16):
"""Process texts in batches and return their embeddings."""
model.eval()
with torch.no_grad():
all_embeddings = []
count = 0
for batch in tqdm(batch_generator(texts, batch_size)):
inputs = tokenizer(batch, padding=True, truncation=True, return_tensors="pt", max_length=512).to(device)
outputs = model(**inputs)
embeddings = outputs.last_hidden_state[:, 0, :] # Taking the [CLS] token representation
all_embeddings.append(embeddings.cpu()) # Move to CPU to free GPU memory
#torch.mps.empty_cache() # Clear cache to free up memory
if count == 100:
#torch.mps.empty_cache()
torch.cuda.empty_cache()
count = 0
count +=1
all_embeddings = torch.cat(all_embeddings, dim=0)
return all_embeddings
# Concatenate title and abstract
embeddings = encode_texts(texts_to_embedd, device, batch_size=32).cpu().numpy() # Process texts in batches of 10
return embeddings
def predict(text_input, sample_size_slider, reduce_sample_checkbox, progress=gr.Progress()):
print('getting data to project')
progress(0, desc="Starting...")
query, params = openalex_url_to_pyalex_query(text_input)
query_length = query.count()
print(f'Requesting {query_length} entries...')
records = []
total_pages = (query_length + 199) // 200 # Calculate total number of pages
per_page = 0.3 / total_pages
for i, record in enumerate(chain(*query.paginate(per_page=200))):
records.append(record)
# Update progress bar
progress(per_page * i, desc="Getting queried data...")
records_df = pd.DataFrame(records)
records_df['abstract'] = [invert_abstract(t) for t in records_df['abstract_inverted_index']]
records_df['parsed_publication'] = [get_pub(x) for x in records_df['primary_location']]
records_df['parsed_publication'] = records_df['parsed_publication'].fillna(' ')
records_df['abstract'] = records_df['abstract'].fillna(' ')
records_df['title'] = records_df['title'].fillna(' ')
if reduce_sample_checkbox:
records_df = records_df.sample(sample_size_slider)
print(records_df)
progress(0.3, desc="Embedding Data...")
texts_to_embedd = [title + tokenizer.sep_token + publication + tokenizer.sep_token + abstract for title, publication, abstract in zip(records_df['title'],records_df['parsed_publication'], records_df['abstract'])]
embeddings = create_embeddings(texts_to_embedd)
print(embeddings)
progress(0.5, desc="Project into UMAP-embedding...")
umap_embeddings = mapper.transform(embeddings)
records_df[['x','y']] = umap_embeddings
basedata_df['color'] = '#ced4d211'
records_df['color'] = '#f98e31'
progress(0.6, desc="Set up data...")
stacked_df = pd.concat([basedata_df,records_df], axis=0, ignore_index=True)
stacked_df = stacked_df.fillna("Unlabelled")
stacked_df = stacked_df.reset_index(drop=True)
print(stacked_df)
extra_data = pd.DataFrame(stacked_df['doi'])
file_name = f"{datetime.utcnow().strftime('%s')}.html"
file_path = static_dir / file_name
print(file_path)
#
progress(0.7, desc="Plotting...")
custom_css = """
#title-container {
background: #edededaa;
border-radius: 2px;
box-shadow: 2px 3px 10px #aaaaaa00;
}
#search-container {
position: fixed !important;
top: 20px !important;
right: 20px !important;
left: auto !important;
width: 200px !important;
z-index: 9999 !important;
}
#search {
// padding: 8px 8px !important;
// border: none !important;
// border-radius: 20px !important;
background-color: #ffffffaa !important;
font-family: 'Roboto Condensed', sans-serif !important;
font-size: 14px;
// box-shadow: 0 0px 0px #aaaaaa00 !important;
}
"""
plot = datamapplot.create_interactive_plot(
stacked_df[['x','y']].values,
np.array(stacked_df['cluster_1_labels']),np.array(stacked_df['cluster_2_labels']),np.array(stacked_df['cluster_3_labels']),
hover_text=[str(row['title']) for ix, row in stacked_df.iterrows()],
marker_color_array=stacked_df['color'],
use_medoids=True,
width=1000,
height=1000,
# title='The Science of <span style="color:#ab0b00;"> Consciousness </span>',
# sub_title=f'<div style="margin-top:20px;"> Large sample, n={len(dataset_df_filtered)}, embeddings with specter 2 & UMAP, labels: Claude 3.5 Sonnet </div>',
point_radius_min_pixels=1,
text_outline_width=5,
point_hover_color='#5e2784',
point_radius_max_pixels=7,
color_label_text=False,
font_family="Roboto Condensed",
font_weight=700,
tooltip_font_weight=600,
tooltip_font_family="Roboto Condensed",
extra_point_data=extra_data,
on_click="window.open(`{doi}`)",
custom_css=custom_css,
initial_zoom_fraction=.8,
enable_search=True)
progress(0.9, desc="Saving plot...")
plot.save(file_path)
progress(1.0, desc="Done!")
iframe = f"""<iframe src="/static/{file_name}" width="100%" height="500px"></iframe>"""
link = f'<a href="/static/{file_name}" target="_blank">{file_name}</a>'
return link, iframe
################ MAIN BLOCK #####################
# with gr.Blocks() as block:
# gr.Markdown("""
# ## Mapping OpenAlex-Queries
# This is a tool to further interdisciplinary research – you are a neuroscientist who has used ..., What have the ... been doing with them.
# Your a philosopher of science who wonders where the concept of a fitnesslandscape has appeared...
# """)
# with gr.Row():
# with gr.Column():
# text_input = gr.Textbox(label="Name")
# markdown = gr.Markdown(label="Output Box")
# new_btn = gr.Button("New")
# with gr.Column():
# html = gr.HTML(label="HTML preview", show_label=True)
# new_btn.click(fn=predict, inputs=[text_input], outputs=[markdown, html])
with gr.Blocks() as block:
gr.Markdown("""
## Mapping OpenAlex-Queries
Enter the URL to an OpenAlex-search below. It will take a few minutes, but then the result will be projected onto a map of the OA database as a whole.
""")
# This is a tool to further interdisciplinary research – you are a neuroscientist who has used ..., What have the ... been doing with them.
# You're a philosopher of science who wonders where the concept of a fitness landscape has appeared...
with gr.Column():
text_input = gr.Textbox(label="OpenAlex Fulltext-Search")
sample_size_slider = gr.Slider(label="Sample Size", minimum=10, maximum=20000, step=10, value=1000)
reduce_sample_checkbox = gr.Checkbox(label="Reduce Sample Size", value=True)
new_btn = gr.Button("Run Query")
markdown = gr.Markdown(label="")
html = gr.HTML(label="HTML preview", show_label=True)
new_btn.click(fn=predict, inputs=[text_input, sample_size_slider, reduce_sample_checkbox], outputs=[markdown, html])
def setup_basemap_data():
# get data.
print("getting basemap data...")
#basedata_df = load("100k_filtered_OA_sample_cluster_and_positions.bz")
basedata_df =pickle.load(open('100k_filtered_OA_sample_cluster_and_positions.pkl', 'rb'))
print(basedata_df)
return basedata_df
def setup_mapper():
print("getting mapper...")
params_new = pickle.load(open('umap_mapper_300k_random_OA_specter_2_params.pkl', 'rb'))
print("setting up mapper...")
mapper = umap.UMAP()
# Filter out 'target_backend' from umap_params if it exists
umap_params = {k: v for k, v in params_new.get('umap_params', {}).items() if k != 'target_backend'}
mapper.set_params(**umap_params)
for attr, value in params_new.get('umap_attributes', {}).items():
if attr != 'embedding_':
setattr(mapper, attr, value)
if 'embedding_' in params_new.get('umap_attributes', {}):
mapper.embedding_ = List(params_new['umap_attributes']['embedding_'])
return mapper
basedata_df = setup_basemap_data()
mapper = setup_mapper()
# mount Gradio app to FastAPI app
app = gr.mount_gradio_app(app, block, path="/")
# serve the app
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
# run the app with
# python app.py
# or
# uvicorn "app:app" --host "0.0.0.0" --port 7860 --reload
|