Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import imageio | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
from skimage.transform import resize | |
import warnings | |
from demo import make_animation | |
from skimage import img_as_ubyte | |
from demo import load_checkpoints | |
warnings.filterwarnings("ignore") | |
source_image = imageio.imread('harold.jpg') | |
driving_video = imageio.mimread('part1.mp4') | |
#Resize image and video to 256x256 | |
source_image = resize(source_image, (256, 256))[..., :3] | |
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video] | |
def display(source, driving, generated=None): | |
fig = plt.figure(figsize=(8 + 4 * (generated is not None), 6)) | |
ims = [] | |
for i in range(len(driving)): | |
cols = [source] | |
cols.append(driving[i]) | |
if generated is not None: | |
cols.append(generated[i]) | |
im = plt.imshow(np.concatenate(cols, axis=1), animated=True) | |
plt.axis('off') | |
ims.append([im]) | |
ani = animation.ArtistAnimation(fig, ims, interval=50, repeat_delay=1000) | |
plt.close() | |
return ani | |
# Create some example data | |
st.write("Hello, World!") | |
# display HTML | |
# display Markdown | |
st.write("# Hello, World!") | |
generator, kp_detector = load_checkpoints(config_path='config/vox-256.yaml',checkpoint_path='vox-cpk.pth.tar') | |
predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=True) | |
st.write(predictions) | |
#save resulting video | |
imageio.mimsave('generated.mp4', [img_as_ubyte(frame) for frame in predictions]) |