Spaces:
Running
Running
import pandas as pd | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.model_selection import train_test_split | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.preprocessing import LabelEncoder | |
from datasets import load_dataset | |
import joblib | |
import os | |
import numpy as np | |
# Define paths for the Random Forest model, TF-IDF vectorizer, and label encoder | |
rf_model_path = 'random_forest_model.pkl' | |
vectorizer_path = "tfidf_vectorizer.pkl" | |
label_encoder_path = "label_encoder.pkl" | |
multi_rf_model_path= "random_forest_multi_model.pkl" | |
# Check if models and encoder exist | |
if os.path.exists(rf_model_path) and os.path.exists(vectorizer_path) and os.path.exists(label_encoder_path) and os.path.exists(multi_rf_model_path): | |
# Load the models if they already exist | |
rf_single = joblib.load(rf_model_path) | |
vectorizer = joblib.load(vectorizer_path) | |
le = joblib.load(label_encoder_path) | |
rf_multi = joblib.load(multi_rf_model_path) | |
print("Random Forest model, vectorizer, and label encoder loaded from disk.") | |
else: | |
# Load the dataset | |
ds = load_dataset('ahmedheakl/resume-atlas', cache_dir="C:/Users/dell/.cache/huggingface/datasets") | |
# Create a DataFrame from the 'train' split | |
df_train = pd.DataFrame(ds['train']) | |
# Initialize the Label Encoder and encode the 'Category' labels | |
le = LabelEncoder() | |
df_train['Category_encoded'] = le.fit_transform(df_train['Category']) | |
# Split the dataset into training and test sets | |
X_train, X_test, y_train, y_test = train_test_split( | |
df_train['Text'], df_train['Category_encoded'], test_size=0.2, random_state=42) | |
# Initialize TF-IDF Vectorizer and transform the text data | |
vectorizer = TfidfVectorizer(max_features=1000) | |
X_train_tfidf = vectorizer.fit_transform(X_train) | |
X_test_tfidf = vectorizer.transform(X_test) | |
# Initialize and train the Random Forest models | |
rf_single = RandomForestClassifier(n_estimators=100, random_state=42) | |
rf_single.fit(X_train_tfidf, y_train) | |
rf_multi = RandomForestClassifier(n_estimators=100, random_state=42) | |
rf_multi.fit(X_train_tfidf, y_train) | |
# Save the Random Forest models, TF-IDF vectorizer, and label encoder | |
joblib.dump(rf_single, rf_model_path) | |
joblib.dump(rf_multi, multi_rf_model_path) | |
joblib.dump(vectorizer, vectorizer_path) | |
joblib.dump(le, label_encoder_path) | |
print("Random Forest model, vectorizer, and label encoder trained and saved to disk.") | |
# Single-label classification function for Random Forest model | |
def classify_text_rf(text): | |
try: | |
text_tfidf = vectorizer.transform([text]) | |
predicted_class_index = rf_single.predict(text_tfidf)[0] | |
predicted_category = le.inverse_transform([predicted_class_index])[0] | |
return predicted_category | |
except Exception as e: | |
print(f"Error in classify_text_rf: {e}") | |
return None | |
# Multi-label classification function with top N predictions | |
def classify_text_rf_multi(text, top_n=3): | |
try: | |
text_tfidf = vectorizer.transform([text]) | |
probabilities = rf_multi.predict_proba(text_tfidf)[0] | |
top_n_indices = np.argsort(probabilities)[::-1][:min(top_n, len(probabilities))] | |
top_n_categories = le.inverse_transform(top_n_indices) | |
return top_n_categories | |
except Exception as e: | |
print(f"Error in classify_text_rf_multi: {e}") | |
return None | |