File size: 29,843 Bytes
c26dfd8
 
 
 
 
 
 
 
 
 
 
ea9cb69
c26dfd8
 
 
c4727d5
 
c26dfd8
 
 
 
93def2f
 
 
 
 
 
 
 
 
 
4b9ef74
 
93def2f
c26dfd8
0ce1a9f
c26dfd8
 
 
 
4b9ef74
93def2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9ef74
 
93def2f
 
 
 
 
 
 
 
 
 
4b9ef74
386dd02
 
 
 
 
 
 
 
 
 
 
 
 
4b9ef74
93def2f
 
 
 
 
 
 
 
 
386dd02
93def2f
 
 
 
 
 
 
 
 
 
386dd02
 
 
 
 
93def2f
386dd02
93def2f
 
386dd02
93def2f
 
 
 
386dd02
 
93def2f
 
 
 
 
4b9ef74
 
 
 
c26dfd8
 
 
 
 
 
 
c6d16d4
75dddd5
3ac03d8
cef64b2
c4a5dd4
02f41f3
4b9ef74
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
6e4855e
c6d16d4
75dddd5
 
3ac03d8
 
cef64b2
 
f8a0305
 
02f41f3
 
4b9ef74
 
c26dfd8
 
 
 
 
 
 
 
 
4b9ef74
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9ef74
 
c26dfd8
 
 
 
 
 
 
 
 
 
4b9ef74
 
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
6c3ae1a
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f504a7f
578e872
c26dfd8
f504a7f
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9ef74
 
c26dfd8
4b9ef74
 
c26dfd8
 
 
ee55620
c26dfd8
 
 
ee55620
 
c26dfd8
 
5c09c23
 
 
 
 
 
 
 
 
 
 
 
4b9ef74
 
5c09c23
4b9ef74
 
 
 
5c09c23
 
 
 
c26dfd8
 
 
 
 
 
 
0ce1a9f
c26dfd8
 
 
 
 
 
 
 
4b9ef74
 
 
 
 
 
0ce1a9f
c26dfd8
 
 
 
 
 
 
 
 
c4727d5
 
 
 
 
c26dfd8
 
 
c4727d5
 
c26dfd8
 
578e872
c26dfd8
 
578e872
4b9ef74
 
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9ef74
 
c26dfd8
 
 
 
 
 
4b9ef74
 
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9cb69
 
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
d026b85
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02f41f3
 
 
 
 
 
 
c26dfd8
 
 
 
 
 
 
 
4b9ef74
 
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9cb69
 
4b9ef74
 
ea9cb69
c26dfd8
 
 
 
 
 
 
ea9cb69
c26dfd8
7dfecf7
d222bb9
c26dfd8
 
ea9cb69
4b9ef74
 
ea9cb69
 
2582c02
c26dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfecf7
ea9cb69
 
d222bb9
 
ea9cb69
43981f0
fce5dd0
7eb9412
43981f0
7eb9412
43981f0
 
 
 
 
 
 
 
d386f8b
43981f0
 
d386f8b
43981f0
ea9cb69
93721f8
d2cbf72
93721f8
ea9cb69
4b9ef74
 
ea9cb69
 
c26dfd8
 
 
 
 
 
 
 
 
4b9ef74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
from __future__ import annotations
from typing import TYPE_CHECKING, List

import logging
import json
import commentjson as cjson
import os
import sys
import requests
import urllib3
import traceback
import pathlib

from tqdm import tqdm
import colorama
from duckduckgo_search import DDGS
from itertools import islice
import asyncio
import aiohttp
from enum import Enum

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import BaseCallbackManager

from typing import Any, Dict, List, Optional, Union

from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from langchain.schema import AgentAction, AgentFinish, LLMResult
from threading import Thread, Condition
from collections import deque
from langchain.chat_models.base import BaseChatModel
from langchain.schema import HumanMessage, AIMessage, SystemMessage, BaseMessage

from ..presets import *
from ..index_func import *
from ..utils import *
from .. import shared
from ..config import retrieve_proxy


class CallbackToIterator:
    def __init__(self):
        self.queue = deque()
        self.cond = Condition()
        self.finished = False

    def callback(self, result):
        with self.cond:
            self.queue.append(result)
            self.cond.notify()  # Wake up the generator.

    def __iter__(self):
        return self

    def __next__(self):
        with self.cond:
            # Wait for a value to be added to the queue.
            while not self.queue and not self.finished:
                self.cond.wait()
            if not self.queue:
                raise StopIteration()
            return self.queue.popleft()

    def finish(self):
        with self.cond:
            self.finished = True
            self.cond.notify()  # Wake up the generator if it's waiting.


def get_action_description(text):
    match = re.search('```(.*?)```', text, re.S)
    json_text = match.group(1)
    # 把json转化为python字典
    json_dict = json.loads(json_text)
    # 提取'action'和'action_input'的值
    action_name = json_dict['action']
    action_input = json_dict['action_input']
    if action_name != "Final Answer":
        return f'<p style="font-size: smaller; color: gray;">{action_name}: {action_input}</p>'
    else:
        return ""


class ChuanhuCallbackHandler(BaseCallbackHandler):

    def __init__(self, callback) -> None:
        """Initialize callback handler."""
        self.callback = callback

    def on_agent_action(
        self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
    ) -> Any:
        self.callback(get_action_description(action.log))

    def on_tool_end(
        self,
        output: str,
        color: Optional[str] = None,
        observation_prefix: Optional[str] = None,
        llm_prefix: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """If not the final action, print out observation."""
        # if observation_prefix is not None:
        #     self.callback(f"\n\n{observation_prefix}")
        # self.callback(output)
        # if llm_prefix is not None:
        #     self.callback(f"\n\n{llm_prefix}")
        if observation_prefix is not None:
            logging.info(observation_prefix)
        self.callback(output)
        if llm_prefix is not None:
            logging.info(llm_prefix)

    def on_agent_finish(
        self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
    ) -> None:
        # self.callback(f"{finish.log}\n\n")
        logging.info(finish.log)

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run on new LLM token. Only available when streaming is enabled."""
        self.callback(token)

    def on_chat_model_start(self, serialized: Dict[str, Any], messages: List[List[BaseMessage]],  **kwargs: Any) -> Any:
        """Run when a chat model starts running."""
        pass


class ModelType(Enum):
    Unknown = -1
    OpenAI = 0
    ChatGLM = 1
    LLaMA = 2
    XMChat = 3
    StableLM = 4
    MOSS = 5
    YuanAI = 6
    Minimax = 7
    ChuanhuAgent = 8
    GooglePaLM = 9
    LangchainChat = 10

    @classmethod
    def get_type(cls, model_name: str):
        model_type = None
        model_name_lower = model_name.lower()
        if "gpt" in model_name_lower:
            model_type = ModelType.OpenAI
        elif "chatglm" in model_name_lower:
            model_type = ModelType.ChatGLM
        elif "llama" in model_name_lower or "alpaca" in model_name_lower:
            model_type = ModelType.LLaMA
        elif "xmchat" in model_name_lower:
            model_type = ModelType.XMChat
        elif "stablelm" in model_name_lower:
            model_type = ModelType.StableLM
        elif "moss" in model_name_lower:
            model_type = ModelType.MOSS
        elif "yuanai" in model_name_lower:
            model_type = ModelType.YuanAI
        elif "minimax" in model_name_lower:
            model_type = ModelType.Minimax
        elif "川虎助理" in model_name_lower:
            model_type = ModelType.ChuanhuAgent
        elif "palm" in model_name_lower:
            model_type = ModelType.GooglePaLM
        elif "azure" or "api" in model_name_lower:
            model_type = ModelType.LangchainChat
        else:
            model_type = ModelType.Unknown
        return model_type


class BaseLLMModel:
    def __init__(
        self,
        model_name,
        system_prompt=INITIAL_SYSTEM_PROMPT,
        temperature=1.0,
        top_p=1.0,
        n_choices=1,
        stop=None,
        max_generation_token=None,
        presence_penalty=0,
        frequency_penalty=0,
        logit_bias=None,
        user="",
    ) -> None:
        self.history = []
        self.all_token_counts = []
        self.model_name = model_name
        self.model_type = ModelType.get_type(model_name)
        try:
            self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name]
        except KeyError:
            self.token_upper_limit = DEFAULT_TOKEN_LIMIT
        self.interrupted = False
        self.system_prompt = system_prompt
        self.api_key = None
        self.need_api_key = False
        self.single_turn = False

        self.temperature = temperature
        self.top_p = top_p
        self.n_choices = n_choices
        self.stop_sequence = stop
        self.max_generation_token = None
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty
        self.logit_bias = logit_bias
        self.user_identifier = user

    def get_answer_stream_iter(self):
        """stream predict, need to be implemented
        conversations are stored in self.history, with the most recent question, in OpenAI format
        should return a generator, each time give the next word (str) in the answer
        """
        logging.warning(
            "stream predict not implemented, using at once predict instead")
        response, _ = self.get_answer_at_once()
        yield response

    def get_answer_at_once(self):
        """predict at once, need to be implemented
        conversations are stored in self.history, with the most recent question, in OpenAI format
        Should return:
        the answer (str)
        total token count (int)
        """
        logging.warning(
            "at once predict not implemented, using stream predict instead")
        response_iter = self.get_answer_stream_iter()
        count = 0
        for response in response_iter:
            count += 1
        return response, sum(self.all_token_counts) + count

    def billing_info(self):
        """get billing infomation, inplement if needed"""
        logging.warning("billing info not implemented, using default")
        return BILLING_NOT_APPLICABLE_MSG

    def count_token(self, user_input):
        """get token count from input, implement if needed"""
        # logging.warning("token count not implemented, using default")
        return len(user_input)

    def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""):
        def get_return_value():
            return chatbot, status_text

        status_text = i18n("开始实时传输回答……")
        if fake_input:
            chatbot.append((fake_input, ""))
        else:
            chatbot.append((inputs, ""))

        user_token_count = self.count_token(inputs)
        self.all_token_counts.append(user_token_count)
        logging.debug(f"输入token计数: {user_token_count}")

        stream_iter = self.get_answer_stream_iter()

        if display_append:
            display_append = '\n\n<hr class="append-display no-in-raw" />' + display_append
        for partial_text in stream_iter:
            chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
            self.all_token_counts[-1] += 1
            status_text = self.token_message()
            yield get_return_value()
            if self.interrupted:
                self.recover()
                break
        self.history.append(construct_assistant(partial_text))

    def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""):
        if fake_input:
            chatbot.append((fake_input, ""))
        else:
            chatbot.append((inputs, ""))
        if fake_input is not None:
            user_token_count = self.count_token(fake_input)
        else:
            user_token_count = self.count_token(inputs)
        self.all_token_counts.append(user_token_count)
        ai_reply, total_token_count = self.get_answer_at_once()
        self.history.append(construct_assistant(ai_reply))
        if fake_input is not None:
            self.history[-2] = construct_user(fake_input)
        chatbot[-1] = (chatbot[-1][0], ai_reply + display_append)
        if fake_input is not None:
            self.all_token_counts[-1] += count_token(
                construct_assistant(ai_reply))
        else:
            self.all_token_counts[-1] = total_token_count - \
                sum(self.all_token_counts)
        status_text = self.token_message()
        return chatbot, status_text

    def handle_file_upload(self, files, chatbot, language):
        """if the model accepts multi modal input, implement this function"""
        status = gr.Markdown.update()
        if files:
            index = construct_index(self.api_key, file_src=files)
            status = i18n("索引构建完成")
        return gr.Files.update(), chatbot, status

    def summarize_index(self, files, chatbot, language):
        status = gr.Markdown.update()
        if files:
            index = construct_index(self.api_key, file_src=files)
            status = i18n("总结完成")
            logging.info(i18n("生成内容总结中……"))
            os.environ["OPENAI_API_KEY"] = self.api_key
            from langchain.chains.summarize import load_summarize_chain
            from langchain.prompts import PromptTemplate
            from langchain.chat_models import ChatOpenAI
            from langchain.callbacks import StdOutCallbackHandler
            prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":"
            PROMPT = PromptTemplate(
                template=prompt_template, input_variables=["text"])
            llm = ChatOpenAI()
            chain = load_summarize_chain(
                llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
            summary = chain({"input_documents": list(index.docstore.__dict__[
                            "_dict"].values())}, return_only_outputs=True)["output_text"]
            print(i18n("总结") + f": {summary}")
            chatbot.append([i18n("上传了")+str(len(files))+"个文件", summary])
        return chatbot, status

    def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
        fake_inputs = None
        display_append = []
        limited_context = False
        fake_inputs = real_inputs
        if files:
            from langchain.embeddings.huggingface import HuggingFaceEmbeddings
            from langchain.vectorstores.base import VectorStoreRetriever
            limited_context = True
            msg = "加载索引中……"
            logging.info(msg)
            index = construct_index(self.api_key, file_src=files)
            assert index is not None, "获取索引失败"
            msg = "索引获取成功,生成回答中……"
            logging.info(msg)
            with retrieve_proxy():
                retriever = VectorStoreRetriever(vectorstore=index, search_type="similarity_score_threshold", search_kwargs={
                                                 "k": 6, "score_threshold": 0.5})
                relevant_documents = retriever.get_relevant_documents(
                    real_inputs)
            reference_results = [[d.page_content.strip("�"), os.path.basename(
                d.metadata["source"])] for d in relevant_documents]
            reference_results = add_source_numbers(reference_results)
            display_append = add_details(reference_results)
            display_append = "\n\n" + "".join(display_append)
            real_inputs = (
                replace_today(PROMPT_TEMPLATE)
                .replace("{query_str}", real_inputs)
                .replace("{context_str}", "\n\n".join(reference_results))
                .replace("{reply_language}", reply_language)
            )
        elif use_websearch:
            search_results = []
            with DDGS() as ddgs:
                ddgs_gen = ddgs.text(real_inputs, backend="lite")
                for r in islice(ddgs_gen, 10):
                    search_results.append(r)
            reference_results = []
            for idx, result in enumerate(search_results):
                logging.debug(f"搜索结果{idx + 1}{result}")
                domain_name = urllib3.util.parse_url(result['href']).host
                reference_results.append([result['body'], result['href']])
                display_append.append(
                    # f"{idx+1}. [{domain_name}]({result['href']})\n"
                    f"<a href=\"{result['href']}\" target=\"_blank\">{idx+1}.&nbsp;{result['title']}</a>"
                )
            reference_results = add_source_numbers(reference_results)
            # display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
            display_append = '<div class = "source-a">' + \
                "".join(display_append) + '</div>'
            real_inputs = (
                replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
                .replace("{query}", real_inputs)
                .replace("{web_results}", "\n\n".join(reference_results))
                .replace("{reply_language}", reply_language)
            )
        else:
            display_append = ""
        return limited_context, fake_inputs, display_append, real_inputs, chatbot

    def predict(
        self,
        inputs,
        chatbot,
        stream=False,
        use_websearch=False,
        files=None,
        reply_language="中文",
        should_check_token_count=True,
    ):  # repetition_penalty, top_k

        status_text = "开始生成回答……"
        logging.info(
            "用户" + f"{self.user_identifier}" + "的输入为:" +
            colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL
        )
        if should_check_token_count:
            yield chatbot + [(inputs, "")], status_text
        if reply_language == "跟随问题语言(不稳定)":
            reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."

        limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(
            real_inputs=inputs, use_websearch=use_websearch, files=files, reply_language=reply_language, chatbot=chatbot)
        yield chatbot + [(fake_inputs, "")], status_text

        if (
            self.need_api_key and
            self.api_key is None
            and not shared.state.multi_api_key
        ):
            status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG
            logging.info(status_text)
            chatbot.append((inputs, ""))
            if len(self.history) == 0:
                self.history.append(construct_user(inputs))
                self.history.append("")
                self.all_token_counts.append(0)
            else:
                self.history[-2] = construct_user(inputs)
            yield chatbot + [(inputs, "")], status_text
            return
        elif len(inputs.strip()) == 0:
            status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG
            logging.info(status_text)
            yield chatbot + [(inputs, "")], status_text
            return

        if self.single_turn:
            self.history = []
            self.all_token_counts = []
        self.history.append(construct_user(inputs))

        try:
            if stream:
                logging.debug("使用流式传输")
                iter = self.stream_next_chatbot(
                    inputs,
                    chatbot,
                    fake_input=fake_inputs,
                    display_append=display_append,
                )
                for chatbot, status_text in iter:
                    yield chatbot, status_text
            else:
                logging.debug("不使用流式传输")
                chatbot, status_text = self.next_chatbot_at_once(
                    inputs,
                    chatbot,
                    fake_input=fake_inputs,
                    display_append=display_append,
                )
                yield chatbot, status_text
        except Exception as e:
            traceback.print_exc()
            status_text = STANDARD_ERROR_MSG + str(e)
            yield chatbot, status_text

        if len(self.history) > 1 and self.history[-1]["content"] != inputs:
            logging.info(
                "回答为:"
                + colorama.Fore.BLUE
                + f"{self.history[-1]['content']}"
                + colorama.Style.RESET_ALL
            )

        if limited_context:
            # self.history = self.history[-4:]
            # self.all_token_counts = self.all_token_counts[-2:]
            self.history = []
            self.all_token_counts = []

        max_token = self.token_upper_limit - TOKEN_OFFSET

        if sum(self.all_token_counts) > max_token and should_check_token_count:
            count = 0
            while (
                sum(self.all_token_counts)
                > self.token_upper_limit * REDUCE_TOKEN_FACTOR
                and sum(self.all_token_counts) > 0
            ):
                count += 1
                del self.all_token_counts[0]
                del self.history[:2]
            logging.info(status_text)
            status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
            yield chatbot, status_text

        self.auto_save(chatbot)

    def retry(
        self,
        chatbot,
        stream=False,
        use_websearch=False,
        files=None,
        reply_language="中文",
    ):
        logging.debug("重试中……")
        if len(self.history) > 0:
            inputs = self.history[-2]["content"]
            del self.history[-2:]
        if len(self.all_token_counts) > 0:
            self.all_token_counts.pop()
        elif len(chatbot) > 0:
            inputs = chatbot[-1][0]
        else:
            yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的"
            return

        iter = self.predict(
            inputs,
            chatbot,
            stream=stream,
            use_websearch=use_websearch,
            files=files,
            reply_language=reply_language,
        )
        for x in iter:
            yield x
        logging.debug("重试完毕")

    # def reduce_token_size(self, chatbot):
    #     logging.info("开始减少token数量……")
    #     chatbot, status_text = self.next_chatbot_at_once(
    #         summarize_prompt,
    #         chatbot
    #     )
    #     max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR
    #     num_chat = find_n(self.all_token_counts, max_token_count)
    #     logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats")
    #     chatbot = chatbot[:-1]
    #     self.history = self.history[-2*num_chat:] if num_chat > 0 else []
    #     self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else []
    #     msg = f"保留了最近{num_chat}轮对话"
    #     logging.info(msg)
    #     logging.info("减少token数量完毕")
    #     return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0])

    def interrupt(self):
        self.interrupted = True

    def recover(self):
        self.interrupted = False

    def set_token_upper_limit(self, new_upper_limit):
        self.token_upper_limit = new_upper_limit
        print(f"token上限设置为{new_upper_limit}")

    def set_temperature(self, new_temperature):
        self.temperature = new_temperature

    def set_top_p(self, new_top_p):
        self.top_p = new_top_p

    def set_n_choices(self, new_n_choices):
        self.n_choices = new_n_choices

    def set_stop_sequence(self, new_stop_sequence: str):
        new_stop_sequence = new_stop_sequence.split(",")
        self.stop_sequence = new_stop_sequence

    def set_max_tokens(self, new_max_tokens):
        self.max_generation_token = new_max_tokens

    def set_presence_penalty(self, new_presence_penalty):
        self.presence_penalty = new_presence_penalty

    def set_frequency_penalty(self, new_frequency_penalty):
        self.frequency_penalty = new_frequency_penalty

    def set_logit_bias(self, logit_bias):
        logit_bias = logit_bias.split()
        bias_map = {}
        encoding = tiktoken.get_encoding("cl100k_base")
        for line in logit_bias:
            word, bias_amount = line.split(":")
            if word:
                for token in encoding.encode(word):
                    bias_map[token] = float(bias_amount)
        self.logit_bias = bias_map

    def set_user_identifier(self, new_user_identifier):
        self.user_identifier = new_user_identifier

    def set_system_prompt(self, new_system_prompt):
        self.system_prompt = new_system_prompt

    def set_key(self, new_access_key):
        if "*" not in new_access_key:
            self.api_key = new_access_key.strip()
            msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key)
            logging.info(msg)
            return self.api_key, msg
        else:
            return gr.update(), gr.update()

    def set_single_turn(self, new_single_turn):
        self.single_turn = new_single_turn

    def reset(self):
        self.history = []
        self.all_token_counts = []
        self.interrupted = False
        pathlib.Path(os.path.join(HISTORY_DIR, self.user_identifier, new_auto_history_filename(
            os.path.join(HISTORY_DIR, self.user_identifier)))).touch()
        return [], self.token_message([0])

    def delete_first_conversation(self):
        if self.history:
            del self.history[:2]
            del self.all_token_counts[0]
        return self.token_message()

    def delete_last_conversation(self, chatbot):
        if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]:
            msg = "由于包含报错信息,只删除chatbot记录"
            chatbot.pop()
            return chatbot, self.history
        if len(self.history) > 0:
            self.history.pop()
            self.history.pop()
        if len(chatbot) > 0:
            msg = "删除了一组chatbot对话"
            chatbot.pop()
        if len(self.all_token_counts) > 0:
            msg = "删除了一组对话的token计数记录"
            self.all_token_counts.pop()
        msg = "删除了一组对话"
        return chatbot, msg

    def token_message(self, token_lst=None):
        if token_lst is None:
            token_lst = self.all_token_counts
        token_sum = 0
        for i in range(len(token_lst)):
            token_sum += sum(token_lst[: i + 1])
        return i18n("Token 计数: ") + f"{sum(token_lst)}" + i18n(",本次对话累计消耗了 ") + f"{token_sum} tokens"

    def save_chat_history(self, filename, chatbot, user_name):
        if filename == "":
            return
        if not filename.endswith(".json"):
            filename += ".json"
        return save_file(filename, self.system_prompt, self.history, chatbot, user_name)

    def auto_save(self, chatbot):
        history_file_path = get_history_filepath(self.user_identifier)
        save_file(history_file_path, self.system_prompt,
                  self.history, chatbot, self.user_identifier)

    def export_markdown(self, filename, chatbot, user_name):
        if filename == "":
            return
        if not filename.endswith(".md"):
            filename += ".md"
        return save_file(filename, self.system_prompt, self.history, chatbot, user_name)

    def load_chat_history(self, filename, user_name):
        logging.debug(f"{user_name} 加载对话历史中……")
        logging.info(f"filename: {filename}")
        if type(filename) != str and filename is not None:
            filename = filename.name
        try:
            if "/" not in filename:
                history_file_path = os.path.join(
                    HISTORY_DIR, user_name, filename)
            else:
                history_file_path = filename
            with open(history_file_path, "r", encoding="utf-8") as f:
                json_s = json.load(f)
            try:
                if type(json_s["history"][0]) == str:
                    logging.info("历史记录格式为旧版,正在转换……")
                    new_history = []
                    for index, item in enumerate(json_s["history"]):
                        if index % 2 == 0:
                            new_history.append(construct_user(item))
                        else:
                            new_history.append(construct_assistant(item))
                    json_s["history"] = new_history
                    logging.info(new_history)
            except:
                pass
            logging.debug(f"{user_name} 加载对话历史完毕")
            self.history = json_s["history"]
            return os.path.basename(filename), json_s["system"], json_s["chatbot"]
        except:
            # 没有对话历史或者对话历史解析失败
            logging.info(f"没有找到对话历史记录 {filename}")
            return gr.update(), self.system_prompt, gr.update()

    def delete_chat_history(self, filename, user_name):
        if filename == "CANCELED":
            return gr.update(), gr.update(), gr.update()
        if filename == "":
            return i18n("你没有选择任何对话历史"), gr.update(), gr.update()
        if not filename.endswith(".json"):
            filename += ".json"
        if "/" not in filename:
            history_file_path = os.path.join(HISTORY_DIR, user_name, filename)
        else:
            history_file_path = filename
        try:
            os.remove(history_file_path)
            return i18n("删除对话历史成功"), get_history_names(False, user_name), []
        except:
            logging.info(f"删除对话历史失败 {history_file_path}")
            return i18n("对话历史")+filename+i18n("已经被删除啦"), gr.update(), gr.update()

    def auto_load(self):
        if self.user_identifier == "":
            self.reset()
            return self.system_prompt, gr.update()
        history_file_path = get_history_filepath(self.user_identifier)
        filename, system_prompt, chatbot = self.load_chat_history(
            history_file_path, self.user_identifier)
        return system_prompt, chatbot

    def like(self):
        """like the last response, implement if needed
        """
        return gr.update()

    def dislike(self):
        """dislike the last response, implement if needed
        """
        return gr.update()


class Base_Chat_Langchain_Client(BaseLLMModel):
    def __init__(self, model_name, user_name=""):
        super().__init__(model_name, user=user_name)
        self.need_api_key = False
        self.model = self.setup_model()

    def setup_model(self):
        # inplement this to setup the model then return it
        pass

    def _get_langchain_style_history(self):
        history = [SystemMessage(content=self.system_prompt)]
        for i in self.history:
            if i["role"] == "user":
                history.append(HumanMessage(content=i["content"]))
            elif i["role"] == "assistant":
                history.append(AIMessage(content=i["content"]))
        return history

    def get_answer_at_once(self):
        assert isinstance(
            self.model, BaseChatModel), "model is not instance of LangChain BaseChatModel"
        history = self._get_langchain_style_history()
        response = self.model.generate(history)
        return response.content, sum(response.content)

    def get_answer_stream_iter(self):
        it = CallbackToIterator()
        assert isinstance(
            self.model, BaseChatModel), "model is not instance of LangChain BaseChatModel"
        history = self._get_langchain_style_history()

        def thread_func():
            self.model(messages=history, callbacks=[
                ChuanhuCallbackHandler(it.callback)])
            it.finish()
        t = Thread(target=thread_func)
        t.start()
        partial_text = ""
        for value in it:
            partial_text += value
            yield partial_text