File size: 4,302 Bytes
0df3389
acd52ee
0df3389
acd52ee
 
 
 
 
 
 
 
0df3389
acd52ee
963106b
0df3389
acd52ee
0df3389
acd52ee
 
0df3389
 
acd52ee
8c9f460
acd52ee
 
 
 
673d163
acd52ee
 
 
 
 
 
 
0df3389
acd52ee
 
 
 
 
a1ab50e
 
 
 
 
 
 
 
acd52ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab50e
 
acd52ee
 
0df3389
 
acd52ee
 
 
 
 
 
 
 
 
 
 
a1ab50e
acd52ee
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
from datasets import load_dataset

import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import time

token = os.environ["HF_TOKEN"]
ST = SentenceTransformer("jhgan/ko-sroberta-multitask")

dataset = load_dataset("not-lain/wikipedia",revision = "embedded")

data = dataset["train"]
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset


model_id = "mintaeng/small_fut_final"

# use quantization to lower GPU usage
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(model_id,token=token)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=bnb_config,
    token=token
)
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

SYS_PROMPT = """
 "Below is an instruction that describes a task. Write a response that appropriately completes the request."\
    "μ œμ‹œν•˜λŠ” contextμ—μ„œλ§Œ λŒ€λ‹΅ν•˜κ³  context에 μ—†λŠ” λ‚΄μš©μ€ μƒμ„±ν•˜μ§€λ§ˆ"\
    "make answer in korean. ν•œκ΅­μ–΄λ‘œ λŒ€λ‹΅ν•˜μ„Έμš”"\
    "\n\nContext:\n{context}\n;"\
    "Question: {question}"\
    "\n\nAnswer:"
"""



def search(query: str, k: int = 3 ):
    """a function that embeds a new query and returns the most probable results"""
    embedded_query = ST.encode(query) # embed new query
    scores, retrieved_examples = data.get_nearest_examples( # retrieve results
        "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
        k=k # get only top k results
    )
    return scores, retrieved_examples

def format_prompt(prompt,retrieved_documents,k):
    """using the retrieved documents we will prompt the model to generate our responses"""
    PROMPT = f"Question:{prompt}\nContext:"
    for idx in range(k) :
        PROMPT+= f"{retrieved_documents['text'][idx]}\n"
    return PROMPT


@spaces.GPU(duration=150)
def talk(prompt,history):
    k = 1 # number of retrieved documents
    scores , retrieved_documents = search(prompt, k)
    formatted_prompt = format_prompt(prompt,retrieved_documents,k)
    formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
    messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
    # tell the model to generate
    input_ids = tokenizer.apply_chat_template(
      messages,
      add_generation_prompt=True,
      return_tensors="pt"
    ).to(model.device)
    outputs = model.generate(
      input_ids,
      max_new_tokens=1024,
      eos_token_id=terminators,
      do_sample=True,
      temperature=0.6,
      top_p=0.9,
    )
    streamer = TextIteratorStreamer(
            tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
        )
    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        top_p=0.95,
        temperature=0.75,
        eos_token_id=terminators,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        print(outputs)
        yield "".join(outputs)


TITLE = "# RAG"

DESCRIPTION = """
A rag pipeline with a chatbot feature
Resources used to build this project :
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
* dataset : https://huggingface.co/datasets/not-lain/wikipedia
* faiss docs : 
* chatbot : 
* Full documentation : https://huggingface.co/blog/not-lain/rag-chatbot-using-llama3 
"""


demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["ν’‹μ‚΄ κ²½κΈ° κ·œμΉ™μ΄ 뭐야? "]],
    title=TITLE,
    description=DESCRIPTION,
    
)
demo.launch(debug=True)