Spaces:
Running
Running
File size: 66,604 Bytes
b10121d 360f81c 946a6c9 360f81c a1a3701 360f81c 7b26aba 360f81c 8ff63e4 b10121d 4e4fca8 b10121d 1fc38bc 360f81c 8ff63e4 a57f7ec 033c6de 6359f4f 64446b4 360f81c b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 76bf85e 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 76bf85e 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 76bf85e 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 76bf85e 4e4fca8 b10121d 4e4fca8 b10121d 76bf85e b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 76bf85e 4e4fca8 76bf85e 4e4fca8 b10121d 4e4fca8 b10121d 76bf85e b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 76bf85e 4e4fca8 76bf85e 4e4fca8 b10121d 4e4fca8 b10121d 76bf85e b10121d 4e4fca8 b10121d 4e4fca8 b10121d 4e4fca8 76bf85e 4e4fca8 76bf85e 4e4fca8 b10121d 76bf85e b10121d 360f81c b10121d 663521e 360f81c 55aeee4 360f81c b10121d 360f81c 55aeee4 e9693d3 360f81c 67dda77 76bf85e 360f81c 8b30258 55aeee4 e9693d3 55aeee4 8b30258 360f81c 8b30258 360f81c 81672d7 1138cdd 360f81c 8b30258 07a2d08 8b30258 360f81c 76bf85e 360f81c 8b30258 67dda77 8b30258 360f81c b10121d 4e4fca8 b10121d 360f81c b10121d 360f81c b10121d 360f81c b10121d 360f81c 8ff63e4 360f81c 327a44b 360f81c 327a44b 360f81c 81672d7 8ff63e4 68a9e7e 8cf1cb0 68a9e7e 8cf1cb0 68a9e7e 64446b4 1f4ddf2 4e4fca8 81672d7 8ff63e4 aaadf66 b10121d aaadf66 8ff63e4 b10121d 7ed0b8b 3c356de 64446b4 946a6c9 3c356de 946a6c9 7ed0b8b b10121d 8ff63e4 b10121d 8ff63e4 9f1c84b 8ff63e4 b10121d 8ff63e4 9f1c84b 8ff63e4 b10121d 8ff63e4 946a6c9 76bf85e 4e4fca8 a342695 b10121d 946a6c9 8ff63e4 7ed0b8b 8ff63e4 b10121d a342695 8ff63e4 a342695 8ff63e4 b10121d 8ff63e4 b10121d 8ff63e4 b10121d 8ff63e4 68a9e7e 8ff63e4 68a9e7e 8ff63e4 b10121d 8ff63e4 b10121d 8ff63e4 b10121d 8ff63e4 68a9e7e 8ff63e4 b10121d 8ff63e4 b10121d 8ff63e4 946a6c9 3c356de 8ff63e4 7ed0b8b 8ff63e4 68a9e7e 8ff63e4 b10121d 4e4fca8 8ff63e4 b10121d 4e4fca8 b10121d 81672d7 b10121d 360f81c a57f7ec 8ff63e4 b10121d 64446b4 aaadf66 a57f7ec 6359f4f 8ff63e4 d4e66cd 8ff63e4 64446b4 8ff63e4 64446b4 8ff63e4 64446b4 8ff63e4 b10121d 68a9e7e b10121d 8ff63e4 b10121d 8ff63e4 d4e66cd 8ff63e4 b10121d 68a9e7e b10121d 8ff63e4 b10121d 8ff63e4 b10121d 8ff63e4 b10121d 8ff63e4 a342695 b10121d 8ff63e4 a342695 b10121d 8ff63e4 a342695 8ff63e4 46f6b9d 81672d7 b10121d 360f81c 4e4fca8 1f4ddf2 360f81c b10121d a342695 b10121d 360f81c 8ff63e4 b10121d 6ebe7f5 8ff63e4 b10121d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 |
"""Gradio app for the ML.ENERGY leaderboard.
Everything is in a single file. Search for `gr.Blocks` to find the place
where UI elements are actually defined.
"""
from __future__ import annotations
import copy
import json
import random
import yaml
import requests
import itertools
import contextlib
import argparse
import os
from pathlib import Path
from abc import abstractmethod
from typing import Literal, Any
from dateutil import parser, tz
import numpy as np
import gradio as gr
import pandas as pd
from spitfight.colosseum.client import ControllerClient
COLOSSEUM_UP = False
COLOSSEUM_DOWN_MESSAGE = f"<br/><h2 style='text-align: center'>The Colosseum is currently down for maintenance.</h2>"
COLOSSUMM_YOUTUBE_DEMO_EMBED_HTML = '<div style="width: 100%; min-width: 400px;"><div style="position: relative; width: 100%; overflow: hidden; padding-top: 56.25%"><p><iframe width="560" height="315" style="margin: auto; position: absolute; top: 0; left: 0; right: 0; width: 100%; height: 100%; border: none;" src="https://www.youtube.com/embed/tvNM_gLffFs?si=rW1-10pt5BffJEGH" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe><p></div></div>'
class TableManager:
"""Manages the data for the leaderboard tables for tasks."""
def __init__(self, data_dir: str) -> None:
"""Load leaderboard data from files in `data_dir`.
Expected directory structure: `data_dir/gpu_model`.
Inside the innermost (GPU) directory, there should be:
- `models.json`: JSON file that maps huggingface model IDs to model info.
Some models listed in this file may not have benchmark results.
- `model_org/model_name/*.json`: JSON files containing the benchmark results.
"""
self.data_dir = Path(data_dir)
def __str__(self) -> str:
return f"{self.__class__}(data_dir={self.data_dir})"
def _wrap_model_name(self, url: str, model_name: str) -> str:
"""Wrap the model name in an HTML anchor."""
return f'<a style="text-decoration: underline; text-decoration-style: dotted" target="_blank" href="{url}">{model_name}</a>'
def _unwrap_model_name(self, model_name: str) -> str:
"""Unwrap the model name from an HTML anchor."""
return model_name.split(">")[1].split("<")[0]
@abstractmethod
def get_tab_name(self) -> str:
"""Return the name of the leaderboard."""
@abstractmethod
def get_intro_text(self) -> str:
"""Return the introduction text to be inserted above the table."""
@abstractmethod
def get_detail_text(self, detail_mode: bool) -> str:
"""Return the detail text chunk to be inserted below the table."""
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
"""Return data for the benchmark selection checkboxes."""
return {}
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
"""Return data for the benchmark selection sliders.
Dictionary values are tuples of the form (min, max, step, default).
"""
return {}
@abstractmethod
def get_all_models(self) -> list[str]:
"""Return all available models."""
@abstractmethod
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
"""Set the current set of filters and return the filtered DataFrame."""
class LLMTableManager(TableManager):
def __init__(self, data_dir: str, task_name: str) -> None:
"""Load leaderboard data from files in `data_dir`.
Under `data_dir`, there should be:
- `models.json`: JSON file that maps huggingface model IDs to model info.
Some models listed in this file may not have benchmark results.
- `schema.yaml`: YAML file containing the schema of the benchmark.
Then, benchmark data files are nested under `data_dir` according to the schema.
One directory hierarchy for each choice in the schema and then two more -- the
model's HuggingFace hub organization and the model name.
"""
super().__init__(data_dir)
self.task_name = task_name
# Read in the data into a Pandas DataFrame.
# Important: The ordering `self.schema` determines the directory structure.
self.schema = yaml.safe_load(open(self.data_dir / "schema.yaml"))
models: dict[str, dict[str, Any]] = json.load(
open(self.data_dir / "models.json")
)
res_df = pd.DataFrame()
for choice in itertools.product(*self.schema.values()):
result_dir = self.data_dir / "/".join(choice)
with contextlib.suppress(FileNotFoundError):
for model_id, model_info in models.items():
for file in (result_dir / model_id).glob("*.json"):
model_df = pd.DataFrame([json.load(open(file))])
# Sanity checks and standardization of schema values.
assert model_df["Model"].iloc[0] == model_id
for key, val in zip(self.schema.keys(), choice):
assert (
str(val).lower() in str(model_df[key].iloc[0]).lower()
)
model_df[key] = val
# Format the model name as an HTML anchor.
model_df["Model"] = self._wrap_model_name(model_info["url"], model_info["nickname"])
model_df["Params (B)"] = model_info["params"]
res_df = pd.concat([res_df, model_df])
if res_df.empty:
raise ValueError(
f"No benchmark JSON files were read from {self.data_dir=}."
)
# Order columns
columns = res_df.columns.to_list()
cols_to_order = ["Model", "Params (B)"]
cols_to_order.extend(self.schema.keys())
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
res_df = res_df[columns]
# Order rows
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), "Energy/req (J)"])
self.full_df = res_df.round(2)
# We need to set the default view separately when `gr.State` is forked.
self.set_filter_get_df(detail_mode=False)
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
return self.schema
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
return {"Target Average TPOT (Time Per Output Token) (s)": (0.0, 0.5, 0.01, 0.2)}
def get_all_models(self) -> list[str]:
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
"""Set the current set of filters and return the filtered DataFrame.
Filters can either be completely empty, or be a concatenated list of
choices from all checkboxes and all sliders.
"""
# If the filter is empty, we default to the first choice for each checkbox.
if not filters:
checkboxes = [choices[:1] for choices in self.schema.values()]
sliders = [slider[3] for slider in self.get_benchmark_sliders().values()]
filters = checkboxes + sliders
index = np.full(len(self.full_df), True)
# Checkboxes
for setup, choice in zip(self.schema, filters):
index = index & self.full_df[setup].isin(choice)
cur_df = self.full_df.loc[index]
# Sliders (We just have TPOT for now.)
# For each `Model`, we want to first filter out rows whose `Avg TPOT (s)` is greater than the slider value.
# Finally, only just leave the row whose `Energy/req (J)` is the smallest.
tpot_slo = filters[-1]
cur_df = (
cur_df
.groupby("Model")[cur_df.columns]
.apply(lambda x: x[x["Avg TPOT (s)"] <= tpot_slo], include_groups=True)
.sort_values(by="Energy/req (J)")
.reset_index(drop=True)
.groupby("Model")
.head(1)
)
if not detail_mode:
core_columns = ["Model", "Params (B)", "GPU", "Energy/req (J)"]
readable_name_mapping = {
"Params (B)": "Parameters (Billions)",
"GPU": "GPU model",
"Energy/req (J)": "Energy per response (Joules)",
}
cur_df = cur_df[core_columns].rename(columns=readable_name_mapping)
return cur_df
class LLMChatTableManager(LLMTableManager):
"""LLM table manager for chat tasks."""
def get_tab_name(self) -> str:
return "LLM Chat"
def get_intro_text(self) -> str:
text = """
<h2>How much energy do GenAI models consume?</h2>
<h3>LLM chatbot response generation</h3>
<p style="font-size: 16px">
Large language models (LLMs), especially the instruction-tuned ones, can generate human-like responses to chat prompts.
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for LLM chat energy consumption.
</p>
<p style="font-size: 16px">
More models will be added over time. Stay tuned!
</p>
"""
return text
def get_detail_text(self, detail_mode: bool) -> str:
if detail_mode:
text = """
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
You can tweak the TPOT slider to adjust the target average TPOT for the models.
Each row corresponds to one model, given a constraint on the maximum average TPOT.
If more than one GPU types were chosen, the row shows results from the GPU with the lowest energy consumption per request.
Columns
- **Model**: The name of the model.
- **Params (B)**: Number of parameters in the model.
- **GPU**: Name of the GPU model used for benchmarking.
- **TP**: Tensor parallelism degree.
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
- **Energy/req (J)**: Energy consumed per request in Joules.
- **Avg TPOT (s)**: Average time per output token in seconds.
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
- **Avg BS**: Average batch size of the serving engine over time.
- **Max BS**: Maximum batch size configuration of the serving engine.
For more detailed information, please take a look at the **About** tab.
"""
else:
text = """
Columns
- **Model**: The name of the model.
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
- **GPU model**: Name of the GPU model used for benchmarking.
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
Checking "Show more technical details" above the table will reveal more detailed columns.
Also, for more detailed information, please take a look at the **About** tab.
"""
return text
class LLMCodeTableManager(LLMTableManager):
"""LLM table manager for coding tasks."""
def get_tab_name(self) -> str:
return "LLM Code"
def get_intro_text(self) -> str:
text = """
<h2>How much energy do GenAI models consume?</h2>
<h3>LLM code generation</h3>
<p style="font-size: 16px">
Large language models (LLMs) are also capable of generating code.
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of LLMs specifically trained for code generation.
</p>
<p style="font-size: 16px">
More models will be added over time. Stay tuned!
</p>
"""
return text
def get_detail_text(self, detail_mode: bool) -> str:
if detail_mode:
text = """
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
You can tweak the TPOT slider to adjust the target average TPOT for the models.
Each row corresponds to one model, given a constraint on the maximum average TPOT.
If more than one GPU types were chosen, the row shows results from the GPU with the lowest energy consumption per request.
Columns
- **Model**: The name of the model.
- **Params (B)**: Number of parameters in the model.
- **GPU**: Name of the GPU model used for benchmarking.
- **TP**: Tensor parallelism degree.
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
- **Energy/req (J)**: Energy consumed per request in Joules.
- **Avg TPOT (s)**: Average time per output token in seconds.
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
- **Avg BS**: Average batch size of the serving engine over time.
- **Max BS**: Maximum batch size configuration of the serving engine.
For more detailed information, please take a look at the **About** tab.
"""
else:
text = """
Columns
- **Model**: The name of the model.
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
- **GPU model**: Name of the GPU model used for benchmarking.
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
Checking "Show more technical details" above the table will reveal more detailed columns.
Also, for more detailed information, please take a look at the **About** tab.
"""
return text
class VLMChatTableManager(LLMTableManager):
"""VLM table manager for chat tasks."""
def get_tab_name(self) -> str:
return "VLM Visual Chat"
def get_intro_text(self) -> str:
text = """
<h2>How much energy do GenAI models consume?</h2>
<h3>VLM visual chatbot response generation</h3>
<p style="font-size: 16px">
Vision language models (VLMs) are large language models that can understand images along with text and generate human-like responses to chat prompts with images.
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for VLM chat energy consumption.
</p>
<p style="font-size: 16px">
More models will be added over time. Stay tuned!
</p>
"""
return text
def get_detail_text(self, detail_mode: bool) -> str:
if detail_mode:
text = """
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
You can tweak the TPOT slider to adjust the target average TPOT for the models.
Each row corresponds to one model, given a constraint on the maximum average TPOT.
If more than one GPU types were chosen, the row shows results from the GPU with the lowest energy consumption per request.
Columns
- **Model**: The name of the model.
- **Params (B)**: Number of parameters in the model.
- **GPU**: Name of the GPU model used for benchmarking.
- **TP**: Tensor parallelism degree.
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
- **Energy/req (J)**: Energy consumed per request in Joules.
- **Avg TPOT (s)**: Average time per output token in seconds.
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
- **Avg BS**: Average batch size of the serving engine over time.
- **Max BS**: Maximum batch size configuration of the serving engine.
For more detailed information, please take a look at the **About** tab.
"""
else:
text = """
Columns
- **Model**: The name of the model.
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
- **GPU model**: Name of the GPU model used for benchmarking.
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
Checking "Show more technical details" above the table will reveal more detailed columns.
Also, for more detailed information, please take a look at the **About** tab.
"""
return text
class DiffusionTableManager(TableManager):
def __init__(self, data_dir: str, task_name: str) -> None:
"""Load leaderboard data from files in `data_dir`.
Under `data_dir`, there should be:
- `models.json`: JSON file that maps huggingface model IDs to model info.
Some models listed in this file may not have benchmark results.
- `schema.yaml`: YAML file containing the schema of the benchmark.
Then, benchmark data files are nested under `data_dir` according to the schema.
One directory hierarchy for each choice in the schema and then two more -- the
model's HuggingFace hub organization and the model name.
"""
super().__init__(data_dir)
self.task_name = task_name
if "to video" in task_name.lower():
self.energy_col = "Energy/video (J)"
self.energy_col_readable = "Energy per video (Joules)"
elif "to image" in task_name.lower():
self.energy_col = "Energy/image (J)"
self.energy_col_readable = "Energy per image (Joules)"
else:
raise ValueError(f"Unknown task name: {task_name=}")
# Read in the data into a Pandas DataFrame.
# Important: The ordering `self.schema` determines the directory structure.
self.schema = yaml.safe_load(open(self.data_dir / "schema.yaml"))
models: dict[str, dict[str, Any]] = json.load(
open(self.data_dir / "models.json")
)
res_df = pd.DataFrame()
for choice in itertools.product(*self.schema.values()):
result_dir = self.data_dir / "/".join(choice)
with contextlib.suppress(FileNotFoundError):
for model_id, model_info in models.items():
for file in (result_dir / model_id).glob("*.json"):
model_df = pd.DataFrame([json.load(open(file))])
# Sanity checks and standardization of schema values.
assert model_df["Model"].iloc[0] == model_id
for key, val in zip(self.schema.keys(), choice):
assert (
str(val).lower() in str(model_df[key].iloc[0]).lower()
)
model_df[key] = val
# Format the model name as an HTML anchor.
model_df["Model"] = self._wrap_model_name(model_info["url"], model_info["nickname"])
model_df["Total params"] = model_info["total_params"]
model_df["Denoising params"] = model_info["denoising_params"]
model_df["Resolution"] = model_info["resolution"]
res_df = pd.concat([res_df, model_df])
if res_df.empty:
raise ValueError(
f"No benchmark JSON files were read from {self.data_dir=}."
)
# Order columns
columns = res_df.columns.to_list()
cols_to_order = ["Model", "Denoising params", "Total params"]
cols_to_order.extend(self.schema.keys())
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
res_df = res_df[columns]
# Order rows
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), self.energy_col])
self.full_df = res_df.round(2)
# We need to set the default view separately when `gr.State` is forked.
self.set_filter_get_df(detail_mode=False)
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
return self.schema
def get_all_models(self) -> list[str]:
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
"""Set the current set of filters and return the filtered DataFrame.
Filters can either be completely empty, or be a concatenated list of
choices from all checkboxes and all sliders.
"""
# If the filter is empty, we default to the first choice for each key.
if not filters:
checkboxes = [choices[:1] for choices in self.schema.values()]
sliders = [slider[3] for slider in self.get_benchmark_sliders().values()]
filters = checkboxes + sliders
index = np.full(len(self.full_df), True)
# Checkboxes
for setup, choice in zip(self.schema, filters):
index = index & self.full_df[setup].isin(choice)
cur_df = self.full_df.loc[index]
# Sliders (We just have Batch latency for now.)
# For each `Model`, we want to first filter out rows whose `Batch latency (s)` is greater than the slider value.
# Finally, only just leave the row whose `Energy/image (J)` or `Energy/video (J)` is the smallest.
batch_latency = filters[-1]
cur_df = (
cur_df
.groupby("Model")[cur_df.columns]
.apply(
lambda x: x[x["Batch latency (s)"] <= batch_latency],
include_groups=True,
)
.sort_values(by=self.energy_col)
.reset_index(drop=True)
.groupby("Model")
.head(1)
)
if not detail_mode:
core_columns = ["Model", "Denoising params", "GPU", "Resolution", "Frames", self.energy_col]
readable_name_mapping = {
"Denoising params": "Denoising parameters (Billions)",
"GPU": "GPU model",
self.energy_col: self.energy_col_readable,
}
for column in cur_df.columns:
if column not in core_columns:
cur_df = cur_df.drop(column, axis=1)
cur_df = cur_df.rename(columns=readable_name_mapping)
return cur_df
class DiffusionT2ITableManager(DiffusionTableManager):
"""Diffusion table manager for text-to-image tasks."""
def get_tab_name(self) -> str:
return "Diffusion Text to image"
def get_intro_text(self) -> str:
text = """
<h2>How much energy do GenAI models consume?</h2>
<h3>Diffusion text-to-image generation</h3>
<p style="font-size: 16px">
Diffusion models generate images that align with input text prompts.
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion text-to-image.
</p>
<p style="font-size: 16px">
More models will be added over time. Stay tuned!
</p>
"""
return text
def get_detail_text(self, detail_mode: bool) -> str:
if detail_mode:
text = """
Each row corresponds to one model, given a constraint on the maximum computation time for the whole batch.
If more than one GPU types were chosen, the row shows results from the GPU with the lowest energy consumption per image.
Columns
- **Model**: The name of the model.
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
- **Total params**: Total number of parameters in the model, including encoders and decoders.
- **GPU**: Name of the GPU model used for benchmarking.
- **Energy/image (J)**: Energy consumed per generated image in Joules.
- **Batch latency (s)**: Time taken to generate a batch of images in seconds.
- **Batch size**: Number of prompts/images in a batch.
- **Denoising steps**: Number of denoising steps used for the diffusion model.
- **Resolution**: Resolution of the generated image.
For more detailed information, please take a look at the **About** tab.
"""
else:
text = """
Columns
- **Model**: The name of the model.
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the image.
- **GPU model**: Name of the GPU model used for benchmarking.
- **Energy per image (Joules)**: Energy consumed for each generated image in Joules.
- **Resolution**: Resolution of the generated image.
Checking "Show more technical details" above the table will reveal more detailed columns.
Also, for more detailed information, please take a look at the **About** tab.
"""
return text
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
class DiffusionT2VTableManager(DiffusionTableManager):
"""Diffusion table manager for text-to-video tasks."""
def get_tab_name(self) -> str:
return "Diffusion Text to video"
def get_intro_text(self) -> str:
text = """
<h2>How much energy do GenAI models consume?</h2>
<h3>Diffusion text-to-video generation</h3>
<p style="font-size: 16px">
Diffusion models generate videos that align with input text prompts.
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion text-to-video.
</p>
<p style="font-size: 16px">
More models will be added over time. Stay tuned!
</p>
"""
return text
def get_detail_text(self, detail_mode: bool) -> str:
if detail_mode:
text = """
Each row corresponds to one model, given a constraint on the maximum computation time for the whole batch.
If more than one GPU types were chosen, the row shows results from the GPU with the lowest energy consumption per video.
Columns
- **Model**: The name of the model.
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
- **Total params**: Total number of parameters in the model, including encoders and decoders.
- **GPU**: Name of the GPU model used for benchmarking.
- **Energy/video (J)**: Energy consumed per generated video in Joules.
- **Batch latency (s)**: Time taken to generate a batch of videos in seconds.
- **Batch size**: Number of prompts/videos in a batch.
- **Denoising steps**: Number of denoising steps used for the diffusion model.
- **Frames**: Number of frames in the generated video.
- **Resolution**: Resolution of the generated video.
For more detailed information, please take a look at the **About** tab.
"""
else:
text = """
Columns
- **Model**: The name of the model.
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the video.
- **GPU model**: Name of the GPU model used for benchmarking.
- **Energy per video (Joules)**: Energy consumed for each generated image in Joules.
- **Frames**: Number of frames in the generated video.
- **Resolution**: Resolution of the generated video.
Checking "Show more technical details" above the table will reveal more detailed columns.
Also, for more detailed information, please take a look at the **About** tab.
"""
return text
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
class DiffusionI2VTableManager(DiffusionTableManager):
"""Diffusion table manager for image-to-video tasks."""
def get_tab_name(self) -> str:
return "Diffusion Image to video"
def get_intro_text(self) -> str:
text = """
<h2>How much energy do GenAI models consume?</h2>
<h3>Diffusion image-to-video generation</h3>
<p style="font-size: 16px">
Diffusion models generate videos given an input image (and sometimes alongside with text).
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion image-to-video.
</p>
<p style="font-size: 16px">
More models will be added over time. Stay tuned!
</p>
"""
return text
def get_detail_text(self, detail_mode: bool) -> str:
if detail_mode:
text = """
Each row corresponds to one model, given a constraint on the maximum computation time for the whole batch.
If more than one GPU types were chosen, the row shows results from the GPU with the lowest energy consumption per video.
Columns
- **Model**: The name of the model.
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
- **Total params**: Total number of parameters in the model, including encoders and decoders.
- **GPU**: Name of the GPU model used for benchmarking.
- **Energy/video (J)**: Energy consumed per generated video in Joules.
- **Batch latency (s)**: Time taken to generate a batch of videos in seconds.
- **Batch size**: Number of prompts/videos in a batch.
- **Denoising steps**: Number of denoising steps used for the diffusion model.
- **Frames**: Number of frames in the generated video.
- **Resolution**: Resolution of the generated video.
For more detailed information, please take a look at the **About** tab.
"""
else:
text = """
Columns
- **Model**: The name of the model.
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the video.
- **GPU model**: Name of the GPU model used for benchmarking.
- **Energy per video (Joules)**: Energy consumed for each generated image in Joules.
- **Frames**: Number of frames in the generated video.
- **Resolution**: Resolution of the generated video.
Checking "Show more technical details" above the table will reveal more detailed columns.
Also, for more detailed information, please take a look at the **About** tab.
"""
return text
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
return {"Batch latency (s)": (0.0, 120.0, 1.0, 60.0)}
class LegacyTableManager:
def __init__(self, data_dir: str) -> None:
"""Load the legacy LLM leaderboard data from CSV files in data_dir.
Inside `data_dir`, there should be:
- `models.json`: a JSON file containing information about each model.
- `schema.yaml`: a YAML file containing the schema of the benchmark.
- `score.csv`: a CSV file containing the NLP evaluation metrics of each model.
- `*_benchmark.csv`: CSV files containing the system benchmark results.
Especially, the `*_benchmark.csv` files should be named after the
parameters used in the benchmark. For example, for the CSV file that
contains benchmarking results for A100 and the chat-concise task
(see `schema.yaml`) for possible choices, the file should be named
`A100_chat-concise_benchmark.csv`.
"""
# Load and merge CSV files.
df = self._read_tables(data_dir)
# Add the #params column.
models = json.load(open(f"{data_dir}/models.json"))
df["parameters"] = df["model"].apply(lambda x: models[x]["params"])
# Make the first column (model) an HTML anchor to the model's website.
def format_model_link(model_name: str) -> str:
url = models[model_name]["url"]
nickname = models[model_name]["nickname"]
return (
f'<a style="text-decoration: underline; text-decoration-style: dotted" '
f'target="_blank" href="{url}">{nickname}</a>'
)
df["model"] = df["model"].apply(format_model_link)
# Sort by our 'energy efficiency' score.
df = df.sort_values(by="energy", ascending=True)
# The full table where all the data are.
self.full_df = df
# Default view of the table is to only show the first options.
self.set_filter_get_df()
def _read_tables(self, data_dir: str) -> pd.DataFrame:
"""Read tables."""
df_score = pd.read_csv(f"{data_dir}/score.csv")
with open(f"{data_dir}/schema.yaml") as file:
self.schema: dict[str, list] = yaml.safe_load(file)
res_df = pd.DataFrame()
# Do a cartesian product of all the choices in the schema
# and try to read the corresponding CSV files.
for choice in itertools.product(*self.schema.values()):
filepath = f"{data_dir}/{'_'.join(choice)}_benchmark.csv"
with contextlib.suppress(FileNotFoundError):
df = pd.read_csv(filepath)
for key, val in zip(self.schema.keys(), choice):
df.insert(1, key, val)
res_df = pd.concat([res_df, df])
if res_df.empty:
raise ValueError(f"No benchmark CSV files were read from {data_dir=}.")
df = pd.merge(res_df, df_score, on=["model"]).round(2)
# Order columns.
columns = df.columns.to_list()
cols_to_order = ["model"]
cols_to_order.extend(self.schema.keys())
cols_to_order.append("energy")
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
df = df[columns]
# Delete rows with *any* NaN values.
df = df.dropna()
return df
def _format_msg(self, text: str) -> str:
"""Formats into HTML that prints in Monospace font."""
return f"<pre style='font-family: monospace'>{text}</pre>"
def get_dropdown(self):
columns = self.full_df.columns.tolist()[1:]
return [
gr.Dropdown(choices=columns, value="parameters", label="X"),
gr.Dropdown(choices=columns, value="energy", label="Y"),
gr.Dropdown(choices=["None", *columns], label="Z (optional)"),
]
def update_dropdown(self):
columns = self.full_df.columns.tolist()[1:]
return [
gr.Dropdown.update(choices=columns),
gr.Dropdown.update(choices=columns),
gr.Dropdown.update(choices=["None", *columns]),
]
def set_filter_get_df(self, *filters) -> pd.DataFrame:
"""Set the current set of filters and return the filtered DataFrame."""
# If the filter is empty, we default to the first choice for each key.
if not filters:
filters = [choices[:1] for choices in self.schema.values()]
index = np.full(len(self.full_df), True)
for setup, choice in zip(self.schema, filters):
index = index & self.full_df[setup].isin(choice)
self.cur_df = self.full_df.loc[index]
self.cur_index = index
return self.cur_df
def get_intro_text(self) -> str:
"""Return the leaderboard's introduction text in HTML."""
return """
<div align="center">
<h2 style="color: #23d175">This is the legacy ML.ENERGY LLM leaderboard. This will be removed at the end of this year.</h2>
</div>
<h3>How much energy do modern Large Language Models (LLMs) consume for inference?</h3>
<p style="font-size: 16px">
We used <a href="https://ml.energy/zeus">Zeus</a> to benchmark various open source LLMs in terms of how much time and energy they consume for inference.
</p>
<p style="font-size: 16px">
For more detailed information, please take a look at the <b>About</b> tab.
Every benchmark is limited in some sense -- Before you interpret the results, please take a look at the <b>Limitations</b> section there, too.
</p>
"""
# The global instance of the TableManager should only be used when
# initializing components in the Gradio interface. If the global instance
# is mutated while handling user sessions, the change will be reflected
# in every user session. Instead, the instance provided by gr.State should
# be used.
global_ltbm = LegacyTableManager("data/legacy")
global_tbms = [
LLMChatTableManager("data/llm_text_generation/chat", "Chat"),
LLMCodeTableManager("data/llm_text_generation/code", "Code"),
VLMChatTableManager("data/mllm_text_generation/chat", "Visual chat"),
DiffusionT2ITableManager("data/diffusion/text-to-image", "Text to image"),
DiffusionT2VTableManager("data/diffusion/text-to-video", "Text to video"),
DiffusionI2VTableManager("data/diffusion/image-to-video", "Image to video"),
]
# Custom JS.
# XXX: This is a hack to make the model names clickable.
# Ideally, we should set `datatype` in the constructor of `gr.DataFrame` to
# `["markdown"] + ["number"] * (len(df.columns) - 1)` and format models names
# as an HTML <a> tag. However, because we also want to dynamically add new
# columns to the table and Gradio < 4.0 does not support updating `datatype` with
# `gr.DataFrame.update` yet, we need to manually walk into the DOM and replace
# the innerHTML of the model name cells with dynamically interpreted HTML.
# Desired feature tracked at https://github.com/gradio-app/gradio/issues/3732
dataframe_update_js = f"""
function format_model_link() {{
// Iterate over the cells of the first column of the leaderboard table.
var table_element = document.querySelectorAll(".tab-leaderboard");
for (var table of table_element) {{
for (let index = 1; index <= {len(global_ltbm.full_df) + sum(len(tbm.full_df) for tbm in global_tbms)}; index++) {{
// Get the cell from `table`.
var cell = table.querySelector(`div > div > div > table > tbody > tr:nth-child(${{index}}) > td:nth-child(1) > div > span`);
// var cell = document.querySelector(
// `.tab-leaderboard > div > div > div > table > tbody > tr:nth-child(${{index}}) > td:nth-child(1) > div > span`
// );
// If nothing was found, it likely means that now the visible table has less rows
// than the full table. This happens when the user filters the table. In this case,
// we should just return.
if (cell == null) break;
// This check exists to make this function idempotent.
// Multiple changes to the Dataframe component may invoke this function,
// multiple times to the same HTML table (e.g., adding and sorting cols).
// Thus, we check whether we already formatted the model names by seeing
// whether the child of the cell is a text node. If it is not,
// it means we already parsed it into HTML, so we should just return.
if (cell.firstChild.nodeType != 3) break;
// Decode and interpret the innerHTML of the cell as HTML.
var decoded_string = new DOMParser().parseFromString(cell.innerHTML, "text/html").documentElement.textContent;
var temp = document.createElement("template");
temp.innerHTML = decoded_string;
var model_anchor = temp.content.firstChild;
// Replace the innerHTML of the cell with the interpreted HTML.
cell.replaceChildren(model_anchor);
}}
}}
// Return all arguments as is.
return arguments
}}
"""
# Custom CSS.
custom_css = """
/* Make ML.ENERGY look like a clickable logo. */
.text-logo {
color: #23d175 !important;
text-decoration: none !important;
}
/* Make the submit button the same color as the logo. */
.btn-submit {
background: #23d175 !important;
color: white !important;
border: 0 !important;
}
/* Center the plotly plot inside its container. */
.plotly > div {
margin: auto !important;
}
/* Limit the width of the first column to 300 px. */
table td:first-child,
table th:first-child {
max-width: 300px;
overflow: auto;
white-space: nowrap;
}
/* Make tab buttons larger */
.tab-nav > button {
font-size: 18px !important;
}
/* Color texts. */
.green-text {
color: #23d175 !important;
}
.red-text {
color: #ff3860 !important;
}
/* Flashing model name borders. */
@keyframes blink {
0%, 33%, 67%, 100% {
border-color: transparent;
}
17%, 50%, 83% {
border-color: #23d175;
}
}
/* Older browser compatibility */
@-webkit-keyframes blink {
0%, 33%, 67%, 100% {
border-color: transparent;
}
17%, 50%, 83% {
border-color: #23d175;
}
}
.model-name-text {
border: 2px solid transparent; /* Transparent border initially */
animation: blink 3s ease-in-out 1; /* One complete cycle of animation, lasting 3 seconds */
-webkit-animation: blink 3s ease-in-out 1; /* Older browser compatibility */
}
/* Grey out components when the Colosseum is down. */
.greyed-out {
pointer-events: none;
opacity: 0.4;
}
/* Make the Citation header larger */
#citation-header > div > span {
font-size: 16px !important;
}
/* Align everything in tables to the right. */
/* Not the best solution, but at least makes the numbers align. */
.tab-leaderboard span {
text-align: right;
}
"""
# The app will not start without a controller address set.
controller_addr = os.environ.get("COLOSSEUM_CONTROLLER_ADDR")
if controller_addr is None:
COLOSSEUM_UP = False
COLOSSEUM_DOWN_MESSAGE = "<br/><h2 style='text-align: center'>Local testing mode. Colosseum disabled.</h2>"
controller_addr = "localhost"
global_controller_client = ControllerClient(controller_addr=controller_addr, timeout=15)
# Fetch the latest update date of the leaderboard repository.
resp = requests.get("https://api.github.com/repos/ml-energy/leaderboard/commits/master")
if resp.status_code != 200:
current_date = "[Failed to fetch]"
print("Failed to fetch the latest release date of the leaderboard repository.")
print(resp.json())
else:
current_datetime = parser.parse(resp.json()["commit"]["author"]["date"])
current_date = current_datetime.astimezone(tz.gettz("US/Eastern")).strftime(
"%Y-%m-%d"
)
# Load the list of models. To reload, the app should be restarted.
RANDOM_MODEL_NAME = "Random"
RANDOM_USER_PREFERENCE = "Two random models"
global_available_models = global_controller_client.get_available_models() if COLOSSEUM_UP else []
model_name_to_user_pref = {model: f"One is {model}" for model in global_available_models}
model_name_to_user_pref[RANDOM_MODEL_NAME] = RANDOM_USER_PREFERENCE
user_pref_to_model_name = {v: k for k, v in model_name_to_user_pref.items()}
# Colosseum helper functions.
def enable_interact(num: int):
def inner():
return [gr.update(interactive=True)] * num
return inner
def disable_interact(num: int):
def inner():
return [gr.update(interactive=False)] * num
return inner
def consumed_less_energy_message(energy_a, energy_b):
"""Return a message that indicates that the user chose the model that consumed less energy.
By default report in "%f %" but if the difference is larger than 2 times, report in "%f X".
"""
less_energy = min(energy_a, energy_b)
more_energy = max(energy_a, energy_b)
factor = less_energy / more_energy
how_much = f"{1 / factor:.1f}x" if factor <= 0.5 else f"{100 - factor * 100:.1f}%"
return f"<h2>That response also <span class='green-text'>consumed {how_much} less energy</span> ({energy_a:,.0f} J vs. {energy_b:,.0f} J)!</h2>"
def consumed_more_energy_message(energy_a, energy_b):
"""Return a message that indicates that the user chose the model that consumed more energy.
By default report in "%f %" but if the difference is larger than 2 times, report in "%f X".
"""
less_energy = min(energy_a, energy_b)
more_energy = max(energy_a, energy_b)
factor = more_energy / less_energy
how_much = f"{factor:.1f}x" if factor >= 2.0 else f"{factor * 100 - 100:.1f}%"
return f"<h2>That response <span class='red-text'>consumed {how_much} more energy</span> ({energy_a:,.0f} J vs. {energy_b:,.0f} J).</h2>"
# Colosseum event handlers
def on_load():
"""Intialize the dataframe, shuffle the model preference dropdown choices."""
dataframe = global_ltbm.set_filter_get_df()
dataframes = [global_tbm.set_filter_get_df(detail_mode=False) for global_tbm in global_tbms]
return dataframe, *dataframes
def add_prompt_disable_submit(prompt, history_a, history_b):
"""Add the user's prompt to the two model's history and disable further submission."""
client = global_controller_client.fork()
return [
gr.Textbox.update(value=" ", interactive=False),
gr.Button.update(interactive=False),
history_a + [[prompt, ""]],
history_b + [[prompt, ""]],
client,
]
def generate_responses(client: ControllerClient, history_a, history_b):
"""Generate responses for the two models."""
model_preference = RANDOM_MODEL_NAME
for resp_a, resp_b in itertools.zip_longest(
client.prompt(
prompt=history_a[-1][0], index=0, model_preference=model_preference
),
client.prompt(
prompt=history_b[-1][0], index=1, model_preference=model_preference
),
):
if resp_a is not None:
history_a[-1][1] += resp_a
if resp_b is not None:
history_b[-1][1] += resp_b
yield [history_a, history_b]
def make_resp_vote_func(victory_index: Literal[0, 1]):
"""Return a function that will be called when the user clicks on response preference vote buttons."""
def resp_vote_func(client: ControllerClient):
vote_response = client.response_vote(victory_index=victory_index)
model_name_a, model_name_b = map(lambda n: f"## {n}", vote_response.model_names)
energy_a, energy_b = vote_response.energy_consumptions
# User liked the model that also consumed less energy.
if (victory_index == 0 and energy_a <= energy_b) or (victory_index == 1 and energy_a >= energy_b):
energy_message = consumed_less_energy_message(energy_a, energy_b)
return [
# Disable response vote buttons
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
# Reveal model names
gr.Markdown.update(model_name_a, visible=True), gr.Markdown.update(model_name_b, visible=True),
# Display energy consumption comparison message
gr.Markdown.update(energy_message, visible=True),
# Keep energy vote buttons hidden
gr.Button.update(visible=False, interactive=False), gr.Button.update(visible=False, interactive=False),
# Enable reset button
gr.Button.update(visible=True, interactive=True),
]
# User liked the model that consumed more energy.
else:
energy_message = consumed_more_energy_message(energy_a, energy_b)
return [
# Disable response vote buttons
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
# Leave model names hidden
gr.Markdown.update(visible=False), gr.Markdown.update(visible=False),
# Display energy consumption comparison message
gr.Markdown.update(energy_message, visible=True),
# Reveal and enable energy vote buttons
gr.Button.update(visible=True, interactive=True), gr.Button.update(visible=True, interactive=True),
# Keep the reset button disabled
gr.Button.update(visible=False, interactive=False),
]
return resp_vote_func
def make_energy_vote_func(is_worth: bool):
"""Return a function that will be called when the user clicks on energy vote buttons."""
def energy_vote_func(client: ControllerClient, energy_message: str):
vote_response = client.energy_vote(is_worth=is_worth)
model_name_a, model_name_b = map(lambda n: f"## {n}", vote_response.model_names)
return [
# Reveal model names
gr.Markdown.update(model_name_a, visible=True), gr.Markdown.update(model_name_b, visible=True),
# Disable energy vote buttons
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
# Enable reset button
gr.Button.update(interactive=True, visible=True),
# Append to the energy comparison message
energy_message[:-5] + (" Fair enough.</h2>" if is_worth else " Wasn't worth it.</h2>"),
]
return energy_vote_func
def play_again():
available_models = copy.deepcopy(global_available_models)
random.shuffle(available_models)
available_models.insert(0, RANDOM_MODEL_NAME)
return [
# Clear chatbot history
None, None,
# Enable prompt textbox and submit button
gr.Textbox.update(value="", interactive=True), gr.Button.update(interactive=True),
# Mask model names
gr.Markdown.update(value="", visible=False), gr.Markdown.update(value="", visible=False),
# Hide energy vote buttons and message
gr.Button.update(visible=False), gr.Button.update(visible=False), gr.Markdown.update(visible=False),
# Disable reset button
gr.Button.update(interactive=False, visible=False),
]
def toggle_detail_mode_slider_visibility(detail_mode: bool, *sliders):
return [detail_mode] + [gr.update(visible=detail_mode)] * len(sliders)
def toggle_detail_mode_sync_tabs(detail_mode: bool, *checkboxes):
return [gr.Checkbox.update(value=detail_mode)] * len(checkboxes) + [gr.Markdown.update(tbm.get_detail_text(detail_mode)) for tbm in global_tbms]
focus_prompt_input_js = """
function() {
for (let textarea of document.getElementsByTagName("textarea")) {
if (textarea.hasAttribute("autofocus")) {
textarea.focus();
return;
}
}
}
"""
with gr.Blocks(css=custom_css) as block:
tbm = gr.State(global_ltbm) # type: ignore
local_tbms: list[TableManager] = [gr.State(global_tbm) for global_tbm in global_tbms] # type: ignore
detail_mode = gr.State(False) # type: ignore
with gr.Box():
gr.HTML(
"<h1><a href='https://ml.energy' class='text-logo'>ML.ENERGY</a> Leaderboard</h1>"
)
with gr.Tabs():
# Tab: Leaderboards.
dataframes = []
all_detail_mode_checkboxes = []
all_sliders = []
all_detail_text_components = []
for global_tbm, local_tbm in zip(global_tbms, local_tbms):
with gr.Tab(global_tbm.get_tab_name()):
# Box: Introduction text.
with gr.Box():
gr.Markdown(global_tbm.get_intro_text())
# Block: Checkboxes and sliders to select benchmarking parameters. A detail mode checkbox.
with gr.Row():
checkboxes: list[gr.CheckboxGroup] = []
for key, choices in global_tbm.get_benchmark_checkboxes().items():
# Check the first element by default.
checkboxes.append(gr.CheckboxGroup(choices=choices, value=choices[:1], label=key))
sliders: list[gr.Slider] = []
for key, (min_val, max_val, step, default) in global_tbm.get_benchmark_sliders().items():
sliders.append(gr.Slider(minimum=min_val, maximum=max_val, value=default, step=step, label=key, visible=detail_mode.value))
all_sliders.extend(sliders)
with gr.Row():
detail_mode_checkbox = gr.Checkbox(label="Show more technical details", value=False)
all_detail_mode_checkboxes.append(detail_mode_checkbox)
# Block: Leaderboard table.
with gr.Row():
dataframe = gr.Dataframe(
type="pandas",
elem_classes=["tab-leaderboard"],
interactive=False,
max_rows=1000,
)
dataframes.append(dataframe)
# Make sure the models have clickable links.
dataframe.change(
None, None, None, _js=dataframe_update_js, queue=False
)
# Table automatically updates when users check or uncheck any checkbox or move any slider.
for element in [detail_mode_checkbox, *checkboxes, *sliders]:
element.change(
global_tbm.__class__.set_filter_get_df,
inputs=[local_tbm, detail_mode, *checkboxes, *sliders],
outputs=dataframe,
queue=False,
)
# Block: More details about the leaderboard.
with gr.Box():
detail_text = global_tbm.get_detail_text(detail_mode=False)
all_detail_text_components.append(gr.Markdown(detail_text))
# Block: Leaderboard date.
with gr.Row():
gr.HTML(
f"<h3 style='color: gray'>Last updated: {current_date}</h3>"
)
# Tab: Legacy leaderboard.
with gr.Tab("LLM Leaderboard (legacy)"):
with gr.Box():
gr.Markdown(global_ltbm.get_intro_text())
# Block: Checkboxes to select benchmarking parameters.
with gr.Row():
with gr.Box():
gr.Markdown("### Benchmark results to show")
checkboxes: list[gr.CheckboxGroup] = []
for key, choices in global_ltbm.schema.items():
# Specifying `value` makes everything checked by default.
checkboxes.append(
gr.CheckboxGroup(
choices=choices, value=choices[:1], label=key
)
)
# Block: Leaderboard table.
with gr.Row():
dataframe = gr.Dataframe(
type="pandas", elem_classes=["tab-leaderboard"], interactive=False
)
# Make sure the models have clickable links.
dataframe.change(None, None, None, _js=dataframe_update_js, queue=False)
# Table automatically updates when users check or uncheck any checkbox.
for checkbox in checkboxes:
checkbox.change(
LegacyTableManager.set_filter_get_df,
inputs=[tbm, *checkboxes],
outputs=dataframe,
queue=False,
)
# Block: Leaderboard date.
with gr.Row():
gr.HTML(f"<h3 style='color: gray'>Last updated: {current_date}</h3>")
# Tab: Colosseum.
with gr.Tab("Colosseum ⚔️️"):
if COLOSSEUM_UP:
gr.Markdown(open("docs/colosseum_top.md").read())
else:
gr.HTML(COLOSSEUM_DOWN_MESSAGE)
gr.HTML("<h3 style='text-align: center'>The energy leaderboards are still available.</h3><br/>")
gr.HTML(COLOSSUMM_YOUTUBE_DEMO_EMBED_HTML)
with gr.Group():
with gr.Row():
prompt_input = gr.Textbox(
show_label=False,
placeholder="Input your prompt, e.g., 'Explain machine learning in simple terms.'",
container=False,
scale=20,
interactive=COLOSSEUM_UP,
elem_classes=None if COLOSSEUM_UP else ["greyed-out"],
)
prompt_submit_btn = gr.Button(
value="⚔️️ Fight!",
elem_classes=["btn-submit"] if COLOSSEUM_UP else ["greyed-out"],
min_width=60,
scale=1,
interactive=COLOSSEUM_UP,
)
with gr.Row():
masked_model_names = []
chatbots = []
resp_vote_btn_list: list[gr.component.Component] = []
with gr.Column():
with gr.Row():
masked_model_names.append(
gr.Markdown(visible=False, elem_classes=["model-name-text"])
)
with gr.Row():
chatbots.append(
gr.Chatbot(
label="Model A",
elem_id="chatbot",
height=400,
elem_classes=None if COLOSSEUM_UP else ["greyed-out"],
)
)
with gr.Row():
left_resp_vote_btn = gr.Button(
value="👈 Model A is better", interactive=False
)
resp_vote_btn_list.append(left_resp_vote_btn)
with gr.Column():
with gr.Row():
masked_model_names.append(
gr.Markdown(visible=False, elem_classes=["model-name-text"])
)
with gr.Row():
chatbots.append(
gr.Chatbot(
label="Model B",
elem_id="chatbot",
height=400,
elem_classes=None if COLOSSEUM_UP else ["greyed-out"],
)
)
with gr.Row():
right_resp_vote_btn = gr.Button(
value="👉 Model B is better", interactive=False
)
resp_vote_btn_list.append(right_resp_vote_btn)
with gr.Row():
energy_comparison_message = gr.HTML(visible=False)
with gr.Row():
worth_energy_vote_btn = gr.Button(
value="The better response was worth 👍 the extra energy.",
visible=False,
)
notworth_energy_vote_btn = gr.Button(
value="Not really worth that much more. 👎", visible=False
)
energy_vote_btn_list: list[gr.component.Component] = [
worth_energy_vote_btn,
notworth_energy_vote_btn,
]
with gr.Row():
play_again_btn = gr.Button(
"Play again!", visible=False, elem_classes=["btn-submit"]
)
gr.Markdown(open("docs/colosseum_bottom.md").read())
controller_client = gr.State()
(prompt_input
.submit(add_prompt_disable_submit, [prompt_input, *chatbots], [prompt_input, prompt_submit_btn, *chatbots, controller_client], queue=False)
.then(generate_responses, [controller_client, *chatbots], [*chatbots], queue=True, show_progress="hidden")
.then(enable_interact(2), None, resp_vote_btn_list, queue=False))
(prompt_submit_btn
.click(add_prompt_disable_submit, [prompt_input, *chatbots], [prompt_input, prompt_submit_btn, *chatbots, controller_client], queue=False)
.then(generate_responses, [controller_client, *chatbots], [*chatbots], queue=True, show_progress="hidden")
.then(enable_interact(2), None, resp_vote_btn_list, queue=False))
left_resp_vote_btn.click(
make_resp_vote_func(victory_index=0),
[controller_client],
[*resp_vote_btn_list, *masked_model_names, energy_comparison_message, *energy_vote_btn_list, play_again_btn],
queue=False,
)
right_resp_vote_btn.click(
make_resp_vote_func(victory_index=1),
[controller_client],
[*resp_vote_btn_list, *masked_model_names, energy_comparison_message, *energy_vote_btn_list, play_again_btn],
queue=False,
)
worth_energy_vote_btn.click(
make_energy_vote_func(is_worth=True),
[controller_client, energy_comparison_message],
[*masked_model_names, *energy_vote_btn_list, play_again_btn, energy_comparison_message],
queue=False,
)
notworth_energy_vote_btn.click(
make_energy_vote_func(is_worth=False),
[controller_client, energy_comparison_message],
[*masked_model_names, *energy_vote_btn_list, play_again_btn, energy_comparison_message],
queue=False,
)
(play_again_btn
.click(
play_again,
None,
[*chatbots, prompt_input, prompt_submit_btn, *masked_model_names, *energy_vote_btn_list, energy_comparison_message, play_again_btn],
queue=False,
)
.then(None, _js=focus_prompt_input_js, queue=False))
# Tab: About page.
with gr.Tab("About"):
gr.Markdown(open("docs/about.md").read())
# Detail mode toggling.
for detail_mode_checkbox in all_detail_mode_checkboxes:
detail_mode_checkbox.change(
toggle_detail_mode_slider_visibility,
inputs=[detail_mode_checkbox, *all_sliders],
outputs=[detail_mode, *all_sliders],
queue=False,
)
detail_mode_checkbox.change(
toggle_detail_mode_sync_tabs,
inputs=[detail_mode_checkbox, *all_detail_mode_checkboxes],
outputs=[*all_detail_mode_checkboxes, *all_detail_text_components],
queue=False,
)
# Citation
with gr.Accordion("📚 Citation", open=False, elem_id="citation-header"):
citation_text = open("docs/citation.bib").read()
gr.Textbox(
value=citation_text,
label="BibTeX for the leaderboard and the Zeus framework used for benchmarking:",
lines=len(list(filter(lambda c: c == "\n", citation_text))),
interactive=False,
show_copy_button=True,
)
# Load the table on page load.
block.load(
on_load,
outputs=[dataframe, *dataframes],
queue=False,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--share", action="store_true", help="Specify if sharing is enabled"
)
parser.add_argument("--concurrency", type=int, default=50)
args = parser.parse_args()
block.queue(concurrency_count=args.concurrency, api_open=False).launch(
share=args.share, show_error=True
)
|