leaderboard / README.md
Jae-Won Chung
Add instructions for running
7109f43
|
raw
history blame
1.32 kB
# ML.ENERGY Leaderboard
How much energy do LLMs consume?
This README focuses on explaining how to run the benchmark yourself.
The actual leaderboard is here: https://ml.energy/leaderboard.
## Setup
### Model weights
- For models that are directly accessible in Hugging Face Hub, you don't need to do anything.
- For other models, convert them to Hugging Face format and put them in `/data/leaderboard/weights/lmsys/vicuna-13B`, for example. The last two path components (e.g., `lmsys/vicuna-13B`) are taken as the name of the model.
### Docker container
```console
$ git clone https://github.com/ml-energy/leaderboard.git
$ cd leaderboard
$ docker build -t ml-energy:latest .
# Replace /data/leaderboard with your data directory.
$ docker run -it \
--name leaderboard \
--gpus all \
-v /data/leaderboard:/data/leaderboard \
-v $HOME/workspace/leaderboard:/workspace/leaderboard \
ml-energy:latest bash
```
## Running the benchmark
```console
# Inside the container
$ cd /workspace/leaderboard
$ python scripts/benchmark.py --model-path /data/leaderboard/weights/lmsys/vicuna-13B --input-file sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json
$ python scripts/benchmark.py --model-path databricks/dolly-v2-12b --input-file sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json
```