Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shutil | |
import argparse | |
import requests | |
from tqdm import tqdm | |
from huggingface_hub import HfApi, hf_hub_download | |
from merge import merge_folder, map_tensors_to_files, copy_nontensor_files, save_tensor_map | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
class RepositoryManager: | |
""" | |
A class to manage HuggingFace repositories. | |
""" | |
base_model_path = os.path.join(os.getcwd(), "base_model") | |
def __init__(self, repo_id, token): | |
self.repo_id = repo_id | |
self.token = token | |
self.api = HfApi(token=token) if token else HfApi() | |
def download_repo(self, repo_name, path): | |
""" | |
Download a repository from HuggingFace. | |
Args: | |
repo_name (str): The name of the repository. | |
path (str): The path to save the downloaded repository. | |
""" | |
if os.path.isdir(repo_name): | |
if not os.path.exists(path): | |
os.makedirs(path) | |
shutil.copytree(repo_name, path, dirs_exist_ok=True) | |
else: | |
if not os.path.exists(path): | |
os.makedirs(path) | |
repo_files = self.api.list_repo_files(repo_name) | |
for file_path in tqdm(repo_files, desc=f"Downloading {repo_name}"): | |
# Skip README.md and image files | |
if file_path == "README.md" or file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg')): | |
continue | |
file_url = f"https://huggingface.co/{repo_name}/resolve/main/{file_path}" | |
hf_hub_download(repo_id=repo_name, filename=file_path, cache_dir=path, local_dir=path) | |
def delete_repo(self, path): | |
""" | |
Delete a repository from the local filesystem. | |
Args: | |
path (str): The path to the repository. | |
""" | |
shutil.rmtree(path, ignore_errors=True) | |
class ModelMerger: | |
""" | |
A class to merge models and upload them to HuggingFace. | |
""" | |
def __init__(self, repo_id=None, token=None): | |
self.repo_id = repo_id | |
self.token = token | |
self.api = HfApi(token=token) if token else HfApi() | |
self.tensor_map = None | |
def prepare_base_model(self, base_model_name, base_model_path): | |
""" | |
Prepare the base model by downloading it from HuggingFace. | |
Args: | |
base_model_name (str): The name of the base model. | |
base_model_path (str): The path to save the base model. | |
""" | |
repo_manager = RepositoryManager(self.repo_id, self.token) | |
repo_manager.download_repo(base_model_name, base_model_path) | |
self.tensor_map = map_tensors_to_files(base_model_path) | |
def merge_repo(self, repo_name, repo_path, p, lambda_val): | |
""" | |
Merge the base model with another model from HuggingFace. | |
Args: | |
repo_name (str): The name of the model to merge. | |
repo_path (str): The path to save the model to merge. | |
p (float): Dropout probability. | |
lambda_val (float): Scaling factor. | |
""" | |
repo_manager = RepositoryManager(self.repo_id, self.token) | |
repo_manager.delete_repo(repo_path) | |
repo_manager.download_repo(repo_name, repo_path) | |
try: | |
self.tensor_map = merge_folder(self.tensor_map, repo_path, p, lambda_val) | |
logging.info(f"Merged {repo_name}") | |
except Exception as e: | |
logging.error(f"Error merging {repo_name}: {e}") | |
def finalize_merge(self, output_dir): | |
""" | |
Finalize the merge by copying non-tensor files and saving the merged tensor map. | |
Args: | |
output_dir (str): The path to the output directory. | |
""" | |
base_model_path = os.path.join(os.getcwd(), "base_model") | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
copy_nontensor_files(base_model_path, output_dir) | |
save_tensor_map(self.tensor_map, output_dir) | |
def upload_model(self, output_dir, commit_message): | |
""" | |
Upload the merged model to HuggingFace. | |
Args: | |
output_dir (str): The path to the output directory containing the merged model. | |
commit_message (str): The commit message for the upload. | |
""" | |
try: | |
# Create a new repository if it doesn't exist | |
if not self.api.repo_exists(repo_id=self.repo_id, token=self.token): | |
self.api.create_repo(repo_id=self.repo_id, token=self.token, private=True) | |
# Upload the folder to the repository | |
self.api.upload_folder( | |
repo_id=self.repo_id, | |
folder_path=output_dir, | |
commit_message=commit_message, | |
token=self.token | |
) | |
url = f"https://huggingface.co/{self.repo_id}" | |
logging.info(f"Model uploaded successfully to {url}") | |
return url | |
except Exception as e: | |
logging.error(f"Error: Failed to upload to {self.repo_id}.") | |
logging.error(e) | |
return "" | |
def get_max_vocab_size(repo_list): | |
""" | |
Get the maximum vocabulary size from a list of repositories. | |
Args: | |
repo_list (list): A list of repositories. | |
Returns: | |
tuple: A tuple containing the maximum vocabulary size and the repository with the maximum vocabulary size. | |
""" | |
max_vocab_size = 0 | |
repo_with_max_vocab = None | |
base_url = "https://huggingface.co/{}/raw/main/config.json" | |
for repo_name, _, _ in repo_list: | |
url = base_url.format(repo_name) | |
try: | |
response = requests.get(url) | |
config = response.json() | |
vocab_size = config.get('vocab_size', 0) | |
if vocab_size > max_vocab_size: | |
max_vocab_size = vocab_size | |
repo_with_max_vocab = repo_name | |
except requests.RequestException as e: | |
logging.error(f"Error fetching vocab size from {repo_name}: {e}") | |
return max_vocab_size, repo_with_max_vocab | |
def download_json_files(repo_name, file_paths, output_dir): | |
""" | |
Download JSON files from a repository. | |
Args: | |
repo_name (str): The name of the repository. | |
file_paths (list): A list of file paths to download. | |
output_dir (str): The path to save the downloaded files. | |
""" | |
base_url = f"https://huggingface.co/{repo_name}/raw/main/" | |
for file_path in file_paths: | |
url = base_url + file_path | |
response = requests.get(url) | |
if response.status_code == 200: | |
with open(os.path.join(output_dir, os.path.basename(file_path)), 'wb') as file: | |
file.write(response.content) | |
else: | |
logging.error(f"Failed to download {file_path} from {repo_name}") | |
def main(): | |
""" | |
Main function to parse command-line arguments and orchestrate the merging and uploading process. | |
""" | |
parser = argparse.ArgumentParser(description="Merge and upload HuggingFace models") | |
parser.add_argument('base_model', type=str, help='Base model safetensors file') | |
parser.add_argument('model_to_merge', type=str, help='Model to merge (.safetensors or .bin)') | |
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability') | |
parser.add_argument('-lambda', '--lambda_value', type=float, default=3.0, help='Scaling factor (optional)') | |
parser.add_argument('--token', type=str, help='HuggingFace token (required for uploading)') | |
parser.add_argument('--repo', type=str, help='HuggingFace repo to upload to (required for uploading)') | |
parser.add_argument('--commit-message', type=str, default='Upload merged model', help='Commit message for model upload') | |
parser.add_argument('-U', '--upload', action='store_true', help='Upload the merged model to HuggingFace Hub') | |
args = parser.parse_args() | |
base_model_path = os.path.join(os.getcwd(), "base_model") | |
model_to_merge_path = os.path.join(os.getcwd(), "model_to_merge") | |
output_dir = os.path.join(os.getcwd(), "output") | |
model_merger = ModelMerger(args.repo, args.token) | |
model_merger.prepare_base_model(args.base_model, base_model_path) | |
model_merger.merge_repo(args.model_to_merge, model_to_merge_path, args.p, args.lambda_value) | |
model_merger.finalize_merge(output_dir) | |
if args.upload: | |
if not args.token or not args.repo: | |
logging.error("Error: HuggingFace token and repo name are required for uploading.") | |
else: | |
url = model_merger.upload_model(output_dir, args.commit_message) | |
if url: | |
logging.info(f"Model uploaded successfully to {url}") | |
if __name__ == "__main__": | |
main() | |