File size: 9,256 Bytes
1997c01
 
 
 
 
d189e4c
1997c01
edc370b
 
 
 
7260f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc370b
1997c01
 
 
 
 
 
 
6866b1f
7260f6e
 
 
83cd13d
d8e3d53
6400777
dc4b91d
a4d5793
 
d8e3d53
0b6419d
d8e3d53
0b6419d
d8e3d53
c024d74
a4d5793
e517d5e
a4d5793
f83432c
 
7260f6e
 
10608aa
0391643
 
10608aa
 
 
 
 
4dcad40
10608aa
 
 
 
0391643
7260f6e
0391643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7260f6e
0391643
 
 
 
 
 
 
 
 
 
 
 
 
850974d
 
 
0391643
850974d
0391643
 
 
 
 
 
 
 
3ea2200
9c17797
0391643
f7c8cd8
 
 
 
 
 
 
 
3c6064e
f7c8cd8
 
 
 
 
 
 
 
 
 
3ea2200
7260f6e
 
 
f7c8cd8
e517d5e
7260f6e
d8e3d53
cba8adc
5fec45e
68e8a9a
3b7be5c
e8a1fdb
 
68e8a9a
 
e8a1fdb
 
68e8a9a
cba8adc
c024d74
7260f6e
 
f83432c
 
 
 
 
 
 
7a4a991
 
 
 
f83432c
0391643
f83432c
cd11506
7a4a991
 
cd11506
 
 
0391643
cd11506
b65f10f
f83432c
cd11506
f83432c
cd11506
f7c8cd8
c1893ae
 
f7c8cd8
 
 
975b5cb
34833f4
 
 
 
 
cd11506
 
 
25d3bcd
 
975b5cb
 
 
f7c8cd8
196214b
cd11506
f83432c
a07c0ed
f83432c
 
0391643
7260f6e
c6a5618
7260f6e
 
 
c6a5618
1997c01
 
c6a5618
9c17797
c1893ae
1997c01
 
83cd13d
19ae57e
1997c01
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
from collections import OrderedDict





#   define variables

#   distance matrices
branch_name_dm = "graph_geometry/distance_matrix"
commit_id_dm = "cfde6f4ba4"   # ebcfc50abe/commits/cfde6f4ba4
dm_activityNodes = "activity_node+distance_matrix_ped_mm_noEntr"
dm_transportStops = "an_stations+distance_matrix_ped_mm_art_noEntr"

#   land use attributes
branch_name_lu = "graph_geometry/activity_nodes_with_land_use"
commit_id_lu = "13ae6cdd30"

#   livability attributes
notion_lu_domains = "407c2fce664f4dde8940bb416780a86d"
notion_domain_attributes = "01401b78420f4296a2449f587d4ed9c9"






def test(input_json):
    print("Received input")
    # Parse the input JSON string
    try:
        inputs = json.loads(input_json)
    except json.JSONDecodeError:
        inputs = json.loads(input_json.replace("'", '"'))


    
    # Accessing input data from Grasshopper
    
    matrix = inputs['input']["matrix"]
    landuses = inputs['input']["landuse_areas"]
    attributeMapperDict = inputs['input']["attributeMapperDict"]
    landuseMapperDict = inputs['input']["landuseMapperDict"]
    
    alpha = inputs['input']["alpha"]
    alpha = float(alpha)
    threshold = inputs['input']["threshold"]
    threshold = float(threshold)
    
    df_matrix = pd.DataFrame(matrix).T
    df_landuses = pd.DataFrame(landuses).T
    df_matrix = df_matrix.round(0).astype(int)
    df_landuses = df_landuses.round(0).astype(int)




    
    # create a mask based on the matrix size and ids, crop activity nodes to the mask
    mask_connected = df_matrix.index.tolist()

    valid_indexes = [idx for idx in mask_connected if idx in df_landuses.index]
    # Identify and report missing indexes
    missing_indexes = set(mask_connected) - set(valid_indexes)
    if missing_indexes:
        print(f"Error: The following indexes were not found in the DataFrame: {missing_indexes}, length: {len(missing_indexes)}")
    
    # Apply the filtered mask
    df_landuses_filtered = df_landuses.loc[valid_indexes]


    # find a set of unique domains, to which subdomains are aggregated    
    temp = []
    for key, values in attributeMapperDict.items():
      domain = attributeMapperDict[key]['domain']
      for item in domain:
        if ',' in item:
          domain_list = item.split(',')
          attributeMapperDict[key]['domain'] = domain_list
          for domain in domain_list:
            temp.append(domain) 
        else:
          if item != 0: 
              temp.append(item)  
    
    domainsUnique = list(set(temp))


    # find a list of unique subdomains, to which land uses are aggregated
    temp = []    
    for key, values in landuseMapperDict.items():
      subdomain = str(landuseMapperDict[key])
      if subdomain != 0: 
        temp.append(subdomain) 
        
    subdomainsUnique = list(set(temp))
    

    
    
    def landusesToSubdomains(DistanceMatrix, LanduseDf, LanduseToSubdomainDict, UniqueSubdomainsList):
        df_LivabilitySubdomainsArea = pd.DataFrame(0, index=DistanceMatrix.index, columns=UniqueSubdomainsList)
    
        for subdomain in UniqueSubdomainsList:
            for lu, lu_subdomain in LanduseToSubdomainDict.items():
                if lu_subdomain == subdomain:
                    if lu in LanduseDf.columns:
                        df_LivabilitySubdomainsArea[subdomain] = df_LivabilitySubdomainsArea[subdomain].add(LanduseDf[lu], fill_value=0)
                    else:
                        print(f"Warning: Column '{lu}' not found in landuse database")
    
        return df_LivabilitySubdomainsArea

    

    LivabilitySubdomainsWeights = landusesToSubdomains(df_matrix,df_landuses_filtered,landuseMapperDict,subdomainsUnique)
    



    
    def FindWorkplaces (DistanceMatrix,SubdomainAttributeDict,destinationWeights,UniqueSubdomainsList ):
        
        df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
    
        for domain in UniqueSubdomainsList:
          for key, value_list in SubdomainAttributeDict.items():
            sqm_per_empl = float(SubdomainAttributeDict[domain]['sqmPerEmpl'][0])
            if key in destinationWeights.columns and key == domain:
              if sqm_per_empl > 0:
                df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
              else:
                df_LivabilitySubdomainsWorkplaces['jobs'] += 0
    
        return df_LivabilitySubdomainsWorkplaces


    WorkplacesNumber = FindWorkplaces(df_matrix,attributeMapperDict,LivabilitySubdomainsWeights,subdomainsUnique)
    
    # prepare an input weights dataframe for the parameter LivabilitySubdomainsInputs
    LivabilitySubdomainsInputs =pd.concat([LivabilitySubdomainsWeights, WorkplacesNumber], axis=1)

    
    
    def computeAccessibility (DistanceMatrix, destinationWeights=None,alpha = 0.0038, threshold = 600):
    
        decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
        subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
        # for weighted accessibility (e. g. areas)
        if not destinationWeights.empty:
            for col in destinationWeights.columns:
                subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
        # for unweighted accessibility (e. g. points of interest)
        else:
            for col in DistanceMatrix.columns:
                subdomainsAccessibility[col] = (decay_factors * 1).sum(axis=1)
        
        return subdomainsAccessibility
    
    subdomainsAccessibility = computeAccessibility(df_matrix,LivabilitySubdomainsInputs,alpha,threshold)




    def remap(value, B_min, B_max, C_min, C_max):
        return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))    


    if 'jobs' not in subdomainsAccessibility.columns:
        print("Error: Column 'jobs' does not exist in the subdomainsAccessibility.")

    
    
    def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict,UniqueDomainsList):
    
        livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
        livability.drop(columns='jobs', inplace=True)
        livability["Workplaces"] = 0
        livability.fillna(0, inplace=True)
        
             
        for domain in UniqueDomainsList:
            livability[domain] = 0
    
    
        # remap accessibility to livability points
        
        for key, values in SubdomainAttributeDict.items():
            if key == 'commercial':
                threshold = float(SubdomainAttributeDict[key]['thresholds'])
                max_livability = float(SubdomainAttributeDict[key]['max_points'])
                livability_score = remap(subdomainsAccessibility['jobs'], 0, threshold, 0, max_livability)
                livability.loc[subdomainsAccessibility['jobs'] >= threshold, 'Workplaces'] = max_livability
                livability.loc[subdomainsAccessibility['jobs'] < threshold, 'Workplaces'] = livability_score
            elif key in subdomainsAccessibility.columns and key != 'commercial':
                domain = [str(item) for item in SubdomainAttributeDict[key]['domain']]
                threshold = float(SubdomainAttributeDict[key]['thresholds'])
                max_livability = float(SubdomainAttributeDict[key]['max_points'])
                sqm_per_employee = SubdomainAttributeDict[key]['sqmPerEmpl']
                
                livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
                livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
                livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
                if any(domain):
                    for item in domain:
                        if domain != 'Workplaces':
                            livability.loc[subdomainsAccessibility[key] >= threshold, item] += max_livability
                            livability.loc[subdomainsAccessibility[key] < threshold, item] += livability_score
            

        return livability
    
    
    

    livability = accessibilityToLivability(df_matrix,subdomainsAccessibility,attributeMapperDict,domainsUnique)
    

    livability_dictionary = livability.to_dict('index')
    LivabilitySubdomainsInputs_dictionary = LivabilitySubdomainsInputs.to_dict('index')
    subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index')
    
    # Prepare the output
    output = {
        "subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary,
        "livability_dictionary": livability_dictionary,
        "subdomainsWeights_dictionary": LivabilitySubdomainsInputs_dictionary
    }


    
    return json.dumps(output)

    # Define the Gradio interface with a single JSON input
iface = gr.Interface(
    fn=test,
    inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
    outputs=gr.JSON(label="Output JSON"),
    title="testspace"
)

iface.launch()