Spaces:
Runtime error
Runtime error
from pathlib import Path | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import requests | |
import torch | |
from PIL import Image | |
from torchvision.io import write_video | |
from torchvision.transforms.functional import pil_to_tensor | |
def get_rgb_image(r=255, g=255, b=255, size=(1400, 900), overlay_im=None, return_pil=False): | |
image = Image.new("RGBA", size, (r, g, b, 255)) | |
if overlay_im: | |
img_w, img_h = overlay_im.size | |
bg_w, bg_h = image.size | |
offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2) | |
image.alpha_composite(overlay_im, offset) | |
image = image.convert("RGB") | |
return image if return_pil else np.array(image) | |
def write_frames_between(image_a, image_b, out_dir="./images", n=500, skip_existing=False): | |
out_dir = Path(out_dir) | |
out_dir.mkdir(exist_ok=True, parents=True) | |
for i, t in enumerate(np.linspace(0.0, 1.0, n)): | |
out_file = out_dir / f"image{i:06d}.jpg" | |
if out_file.exists() and skip_existing: | |
continue | |
im_arr = torch.lerp(torch.tensor(image_a).float(), torch.tensor(image_b).float(), float(t)) | |
im = Image.fromarray(np.around(im_arr.numpy()).astype(np.uint8)) | |
im.save(out_file) | |
def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=1.0, smooth=0.0): | |
y, sr = librosa.load(audio_filepath, offset=offset, duration=duration) | |
# librosa.stft hardcoded defaults... | |
# n_fft defaults to 2048 | |
# hop length is win_length // 4 | |
# win_length defaults to n_fft | |
D = librosa.stft(y, n_fft=2048, hop_length=2048 // 4, win_length=2048) | |
# Extract percussive elements | |
D_harmonic, D_percussive = librosa.decompose.hpss(D, margin=margin) | |
y_percussive = librosa.istft(D_percussive, length=len(y)) | |
# Get normalized melspectrogram | |
spec_raw = librosa.feature.melspectrogram(y=y_percussive, sr=sr) | |
spec_max = np.amax(spec_raw, axis=0) | |
spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max) | |
# Resize cumsum of spec norm to our desired number of interpolation frames | |
x_norm = np.linspace(0, spec_norm.shape[-1], spec_norm.shape[-1]) | |
y_norm = np.cumsum(spec_norm) | |
y_norm /= y_norm[-1] | |
x_resize = np.linspace(0, y_norm.shape[-1], int(duration * fps)) | |
T = np.interp(x_resize, x_norm, y_norm) | |
# Apply smoothing | |
return T * (1 - smooth) + np.linspace(0.0, 1.0, T.shape[0]) * smooth | |
def make_fast_frame_video( | |
frames_or_frame_dir="images", | |
audio_filepath="music/thoughts.mp3", | |
output_filepath="output.mp4", | |
sr=44100, | |
offset=7, | |
duration=5, | |
fps=30, | |
margin=1.0, | |
smooth=0.1, | |
frame_filename_ext=".jpg", | |
): | |
if isinstance(frames_or_frame_dir, list): | |
frame_filepaths = frames_or_frame_dir | |
else: | |
frame_filepaths = sorted(Path(frames_or_frame_dir).glob(f"**/*{frame_filename_ext}")) | |
num_frames = len(frame_filepaths) | |
T = get_timesteps_arr(audio_filepath, offset, duration, fps=fps, margin=margin, smooth=smooth) | |
yp = np.arange(num_frames) | |
xp = np.linspace(0.0, 1.0, num_frames) | |
frame_idxs = np.around(np.interp(T, xp, yp)).astype(np.int32) | |
frames = None | |
for img_path in [frame_filepaths[x] for x in frame_idxs]: | |
frame = pil_to_tensor(Image.open(img_path)).unsqueeze(0) | |
frames = frame if frames is None else torch.cat([frames, frame]) | |
frames = frames.permute(0, 2, 3, 1) | |
y, sr = librosa.load(audio_filepath, sr=sr, mono=True, offset=offset, duration=duration) | |
audio_tensor = torch.tensor(y).unsqueeze(0) | |
write_video( | |
output_filepath, | |
frames, | |
fps=fps, | |
audio_array=audio_tensor, | |
audio_fps=sr, | |
audio_codec="aac", | |
options={"crf": "23", "pix_fmt": "yuv420p"}, | |
) | |
return output_filepath | |
OUTPUT_DIR = "multicolor_images_sm" | |
N = 500 | |
IMAGE_SIZE = (640, 360) | |
MAX_DURATION = 10 | |
if not Path(OUTPUT_DIR).exists(): | |
overlay_image_url = "https://huggingface.co/datasets/nateraw/misc/resolve/main/Group%20122.png" | |
overlay_image = Image.open(requests.get(overlay_image_url, stream=True).raw, "r") | |
hex_codes = ["#5e6179", "#ffbb9f", "#dfeaf2", "#75e9e5", "#ff6b6b"] | |
rgb_vals = [tuple(int(hex.lstrip("#")[i : i + 2], 16) for i in (0, 2, 4)) for hex in hex_codes] | |
for i, (rgb_a, rgb_b) in enumerate(zip(rgb_vals, rgb_vals[1:])): | |
out_dir_step = Path(OUTPUT_DIR) / f"{i:06d}" | |
image_a = get_rgb_image(*rgb_a, size=IMAGE_SIZE, overlay_im=overlay_image) | |
image_b = get_rgb_image(*rgb_b, size=IMAGE_SIZE, overlay_im=overlay_image) | |
write_frames_between(image_a, image_b, out_dir=out_dir_step, n=N) | |
def fn(audio_filepath): | |
return make_fast_frame_video( | |
OUTPUT_DIR, | |
audio_filepath, | |
"out.mp4", | |
sr=44100, | |
offset=0, | |
duration=min(MAX_DURATION, librosa.get_duration(filename=audio_filepath)), | |
fps=18, | |
) | |
interface = gr.Interface( | |
fn=fn, | |
inputs=gr.Audio(type="filepath"), | |
outputs="video", | |
title="Music Visualizer", | |
description="Create a simple music visualizer video with a cute 🤗 logo on top", | |
article="<p style='text-align: center'><a href='https://github.com/nateraw/my-huggingface-repos/tree/main/spaces/music-visualizer' target='_blank'>Github Repo</a></p>", | |
examples=[["https://huggingface.co/datasets/nateraw/misc/resolve/main/quick_example_loop.wav"]], | |
) | |
if __name__ == "__main__": | |
interface.launch(debug=True) | |