nateraw's picture
Upload app.py with huggingface_hub
982a043
raw
history blame
5.43 kB
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import requests
import torch
from PIL import Image
from torchvision.io import write_video
from torchvision.transforms.functional import pil_to_tensor
def get_rgb_image(r=255, g=255, b=255, size=(1400, 900), overlay_im=None, return_pil=False):
image = Image.new("RGBA", size, (r, g, b, 255))
if overlay_im:
img_w, img_h = overlay_im.size
bg_w, bg_h = image.size
offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2)
image.alpha_composite(overlay_im, offset)
image = image.convert("RGB")
return image if return_pil else np.array(image)
def write_frames_between(image_a, image_b, out_dir="./images", n=500, skip_existing=False):
out_dir = Path(out_dir)
out_dir.mkdir(exist_ok=True, parents=True)
for i, t in enumerate(np.linspace(0.0, 1.0, n)):
out_file = out_dir / f"image{i:06d}.jpg"
if out_file.exists() and skip_existing:
continue
im_arr = torch.lerp(torch.tensor(image_a).float(), torch.tensor(image_b).float(), float(t))
im = Image.fromarray(np.around(im_arr.numpy()).astype(np.uint8))
im.save(out_file)
def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=1.0, smooth=0.0):
y, sr = librosa.load(audio_filepath, offset=offset, duration=duration)
# librosa.stft hardcoded defaults...
# n_fft defaults to 2048
# hop length is win_length // 4
# win_length defaults to n_fft
D = librosa.stft(y, n_fft=2048, hop_length=2048 // 4, win_length=2048)
# Extract percussive elements
D_harmonic, D_percussive = librosa.decompose.hpss(D, margin=margin)
y_percussive = librosa.istft(D_percussive, length=len(y))
# Get normalized melspectrogram
spec_raw = librosa.feature.melspectrogram(y=y_percussive, sr=sr)
spec_max = np.amax(spec_raw, axis=0)
spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max)
# Resize cumsum of spec norm to our desired number of interpolation frames
x_norm = np.linspace(0, spec_norm.shape[-1], spec_norm.shape[-1])
y_norm = np.cumsum(spec_norm)
y_norm /= y_norm[-1]
x_resize = np.linspace(0, y_norm.shape[-1], int(duration * fps))
T = np.interp(x_resize, x_norm, y_norm)
# Apply smoothing
return T * (1 - smooth) + np.linspace(0.0, 1.0, T.shape[0]) * smooth
def make_fast_frame_video(
frames_or_frame_dir="images",
audio_filepath="music/thoughts.mp3",
output_filepath="output.mp4",
sr=44100,
offset=7,
duration=5,
fps=30,
margin=1.0,
smooth=0.1,
frame_filename_ext=".jpg",
):
if isinstance(frames_or_frame_dir, list):
frame_filepaths = frames_or_frame_dir
else:
frame_filepaths = sorted(Path(frames_or_frame_dir).glob(f"**/*{frame_filename_ext}"))
num_frames = len(frame_filepaths)
T = get_timesteps_arr(audio_filepath, offset, duration, fps=fps, margin=margin, smooth=smooth)
yp = np.arange(num_frames)
xp = np.linspace(0.0, 1.0, num_frames)
frame_idxs = np.around(np.interp(T, xp, yp)).astype(np.int32)
frames = None
for img_path in [frame_filepaths[x] for x in frame_idxs]:
frame = pil_to_tensor(Image.open(img_path)).unsqueeze(0)
frames = frame if frames is None else torch.cat([frames, frame])
frames = frames.permute(0, 2, 3, 1)
y, sr = librosa.load(audio_filepath, sr=sr, mono=True, offset=offset, duration=duration)
audio_tensor = torch.tensor(y).unsqueeze(0)
write_video(
output_filepath,
frames,
fps=fps,
audio_array=audio_tensor,
audio_fps=sr,
audio_codec="aac",
options={"crf": "23", "pix_fmt": "yuv420p"},
)
return output_filepath
OUTPUT_DIR = "multicolor_images_sm"
N = 500
IMAGE_SIZE = (640, 360)
MAX_DURATION = 10
if not Path(OUTPUT_DIR).exists():
overlay_image_url = "https://huggingface.co/datasets/nateraw/misc/resolve/main/Group%20122.png"
overlay_image = Image.open(requests.get(overlay_image_url, stream=True).raw, "r")
hex_codes = ["#5e6179", "#ffbb9f", "#dfeaf2", "#75e9e5", "#ff6b6b"]
rgb_vals = [tuple(int(hex.lstrip("#")[i : i + 2], 16) for i in (0, 2, 4)) for hex in hex_codes]
for i, (rgb_a, rgb_b) in enumerate(zip(rgb_vals, rgb_vals[1:])):
out_dir_step = Path(OUTPUT_DIR) / f"{i:06d}"
image_a = get_rgb_image(*rgb_a, size=IMAGE_SIZE, overlay_im=overlay_image)
image_b = get_rgb_image(*rgb_b, size=IMAGE_SIZE, overlay_im=overlay_image)
write_frames_between(image_a, image_b, out_dir=out_dir_step, n=N)
def fn(audio_filepath):
return make_fast_frame_video(
OUTPUT_DIR,
audio_filepath,
"out.mp4",
sr=44100,
offset=0,
duration=min(MAX_DURATION, librosa.get_duration(filename=audio_filepath)),
fps=18,
)
interface = gr.Interface(
fn=fn,
inputs=gr.Audio(type="filepath"),
outputs="video",
title="Music Visualizer",
description="Create a simple music visualizer video with a cute 🤗 logo on top",
article="<p style='text-align: center'><a href='https://github.com/nateraw/my-huggingface-repos/tree/main/spaces/music-visualizer' target='_blank'>Github Repo</a></p>",
examples=[["https://huggingface.co/datasets/nateraw/misc/resolve/main/quick_example_loop.wav"]],
)
if __name__ == "__main__":
interface.launch(debug=True)