File size: 8,348 Bytes
88435ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time
from abc import abstractmethod
from typing import Any, Literal, cast

from anthropic import Anthropic, AnthropicBedrock, AnthropicVertex, Stream
from anthropic.types import MessageParam as AnthropicMessageParam
from anthropic.types import MessageStreamEvent as AnthropicMessageStreamEvent
from anthropic.types.message import Message as AnthropicMessage

from neollm.llm.abstract_llm import AbstractLLM
from neollm.types import (
    ChatCompletion,
    LLMSettings,
    Message,
    Messages,
    Response,
    StreamResponse,
)
from neollm.types.openai.chat_completion import (
    ChatCompletionMessage,
    Choice,
    CompletionUsage,
    FinishReason,
)
from neollm.types.openai.chat_completion_chunk import (
    ChatCompletionChunk,
    ChoiceDelta,
    ChunkChoice,
)
from neollm.utils.utils import cprint

DEFAULT_MAX_TOKENS = 4_096


class AbstractClaude(AbstractLLM):
    @property
    @abstractmethod
    def client(self) -> Anthropic | AnthropicVertex | AnthropicBedrock: ...

    @property
    def _client_for_token(self) -> Anthropic:
        """トークンカウント用のAnthropicクライアント取得
        (AnthropicBedrock, AnthropicVertexがmethodを持っていないため)

        Returns:
            Anthropic: Anthropicクライアント
        """
        return Anthropic()

    def encode(self, text: str) -> list[int]:
        tokenizer = self._client_for_token.get_tokenizer()
        encoded = cast(list[int], tokenizer.encode(text).ids)
        return encoded

    def decode(self, decoded: list[int]) -> str:
        tokenizer = self._client_for_token.get_tokenizer()
        text = cast(str, tokenizer.decode(decoded))
        return text

    def count_tokens(self, messages: list[Message] | None = None, only_response: bool = False) -> int:
        """
        トークン数の計測

        Args:
            messages (Messages): messages

        Returns:
            int: トークン数
        """
        if messages is None:
            return 0
        tokens = 0
        for message in messages:
            content = message["content"]
            if isinstance(content, str):
                tokens += self._client_for_token.count_tokens(content)
                continue
            if isinstance(content, list):
                for content_i in content:
                    if content_i["type"] == "text":
                        tokens += self._client_for_token.count_tokens(content_i["text"])
                continue
        return tokens

    def _convert_finish_reason(
        self, stop_reason: Literal["end_turn", "max_tokens", "stop_sequence"] | None
    ) -> FinishReason | None:
        if stop_reason == "max_tokens":
            return "length"
        if stop_reason == "stop_sequence":
            return "stop"
        return None

    def _convert_to_response(self, platform_response: AnthropicMessage) -> Response:
        return ChatCompletion(
            id=platform_response.id,
            choices=[
                Choice(
                    index=0,
                    message=ChatCompletionMessage(
                        content=platform_response.content[0].text if len(platform_response.content) > 0 else "",
                        role="assistant",
                    ),
                    finish_reason=self._convert_finish_reason(platform_response.stop_reason),
                )
            ],
            created=int(time.time()),
            model=self.model,
            object="messages.create",
            system_fingerprint=None,
            usage=CompletionUsage(
                prompt_tokens=platform_response.usage.input_tokens,
                completion_tokens=platform_response.usage.output_tokens,
                total_tokens=platform_response.usage.input_tokens + platform_response.usage.output_tokens,
            ),
        )

    def _convert_to_platform_messages(self, messages: Messages) -> tuple[str, list[AnthropicMessageParam]]:
        _system = ""
        _message: list[AnthropicMessageParam] = []
        for message in messages:
            if message["role"] == "system":
                _system += "\n" + message["content"]
            elif message["role"] == "user":
                if isinstance(message["content"], str):
                    _message.append({"role": "user", "content": message["content"]})
                else:
                    cprint("WARNING: 未対応です", color="yellow", background=True)
            elif message["role"] == "assistant":
                if isinstance(message["content"], str):
                    _message.append({"role": "assistant", "content": message["content"]})
                else:
                    cprint("WARNING: 未対応です", color="yellow", background=True)
            else:
                cprint("WARNING: 未対応です", color="yellow", background=True)
        return _system, _message

    def _convert_to_streamresponse(
        self, platform_streamresponse: Stream[AnthropicMessageStreamEvent]
    ) -> StreamResponse:
        created = int(time.time())
        model = ""
        id_ = ""
        content: str | None = None
        for chunk in platform_streamresponse:
            input_tokens = 0
            output_tokens = 0
            if chunk.type == "message_stop" or chunk.type == "content_block_stop":
                continue
            if chunk.type == "message_start":
                model = model or chunk.message.model
                id_ = id_ or chunk.message.id
                input_tokens = chunk.message.usage.input_tokens
                output_tokens = chunk.message.usage.output_tokens
                content = "".join([content_block.text for content_block in chunk.message.content])
                finish_reason = self._convert_finish_reason(chunk.message.stop_reason)
            elif chunk.type == "message_delta":
                content = ""
                finish_reason = self._convert_finish_reason(chunk.delta.stop_reason)
                output_tokens = chunk.usage.output_tokens
            elif chunk.type == "content_block_start":
                content = chunk.content_block.text
                finish_reason = None
            elif chunk.type == "content_block_delta":
                content = chunk.delta.text
                finish_reason = None
            yield ChatCompletionChunk(
                id=id_,
                choices=[
                    ChunkChoice(
                        delta=ChoiceDelta(
                            content=content,
                            role="assistant",
                        ),
                        finish_reason=finish_reason,
                        index=0,  # 0-indexedじゃないかもしれないので0に塗り替え
                    )
                ],
                created=created,
                model=model,
                object="chat.completion.chunk",
                tokens={"input_tokens": input_tokens, "output_tokens": output_tokens},  # type: ignore
            )

    def generate(self, messages: Messages, llm_settings: LLMSettings) -> Response:
        _system, _message = self._convert_to_platform_messages(messages)
        llm_settings = self._set_max_tokens(llm_settings)
        response = self.client.messages.create(
            model=self.model,
            system=_system,
            messages=_message,
            stream=False,
            **llm_settings,
        )
        return self._convert_to_response(platform_response=response)

    def generate_stream(self, messages: Any, llm_settings: LLMSettings) -> StreamResponse:
        _system, _message = self._convert_to_platform_messages(messages)
        llm_settings = self._set_max_tokens(llm_settings)
        response = self.client.messages.create(
            model=self.model,
            system=_system,
            messages=_message,
            stream=True,
            **llm_settings,
        )
        return self._convert_to_streamresponse(platform_streamresponse=response)

    def _set_max_tokens(self, llm_settings: LLMSettings) -> LLMSettings:
        # claudeはmax_tokensが必須
        if not llm_settings.get("max_tokens"):
            cprint(f"max_tokens is not set. Set to {DEFAULT_MAX_TOKENS}.", color="yellow")
            llm_settings["max_tokens"] = DEFAULT_MAX_TOKENS
        return llm_settings