File size: 9,067 Bytes
88435ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import time
from abc import abstractmethod
from typing import Iterable, cast

from google.cloud.aiplatform_v1beta1.types import CountTokensResponse
from google.cloud.aiplatform_v1beta1.types.content import Candidate
from vertexai.generative_models import (
    Content,
    GenerationConfig,
    GenerationResponse,
    GenerativeModel,
    Part,
)
from vertexai.generative_models._generative_models import ContentsType

from neollm.llm.abstract_llm import AbstractLLM
from neollm.types import (
    ChatCompletion,
    CompletionUsageForCustomPriceCalculation,
    LLMSettings,
    Message,
    Messages,
    Response,
    StreamResponse,
)
from neollm.types.openai.chat_completion import (
    ChatCompletionMessage,
    Choice,
    CompletionUsage,
)
from neollm.types.openai.chat_completion import FinishReason as FinishReasonVertex
from neollm.types.openai.chat_completion_chunk import (
    ChatCompletionChunk,
    ChoiceDelta,
    ChunkChoice,
)
from neollm.utils.utils import cprint


class AbstractGemini(AbstractLLM):

    @abstractmethod
    def generate_config(self, llm_settings: LLMSettings) -> GenerationConfig: ...

    # 使っていない
    def encode(self, text: str) -> list[int]:
        return [ord(char) for char in text]

    # 使っていない
    def decode(self, decoded: list[int]) -> str:
        return "".join([chr(number) for number in decoded])

    def _count_tokens_vertex(self, contents: ContentsType) -> CountTokensResponse:
        model = GenerativeModel(model_name=self.model)
        return cast(CountTokensResponse, model.count_tokens(contents))

    def count_tokens(self, messages: list[Message] | None = None, only_response: bool = False) -> int:
        """
        トークン数の計測

        Args:
            messages (Messages): messages

        Returns:
            int: トークン数
        """
        if messages is None:
            return 0
        _system, _message = self._convert_to_platform_messages(messages)
        total_tokens = 0
        if _system:
            total_tokens += int(self._count_tokens_vertex(_system).total_tokens)
        if _message:
            total_tokens = int(self._count_tokens_vertex(_message).total_tokens)
        return total_tokens

    def _convert_to_platform_messages(self, messages: Messages) -> tuple[str | None, list[Content]]:
        _system = None
        _message: list[Content] = []

        for message in messages:
            if message["role"] == "system":
                _system = "\n" + message["content"]
            elif message["role"] == "user":
                if isinstance(message["content"], str):
                    _message.append(Content(role="user", parts=[Part.from_text(message["content"])]))
                else:
                    try:
                        if isinstance(message["content"], list) and message["content"][1]["type"] == "image_url":
                            encoded_image = message["content"][1]["image_url"]["url"].split(",")[-1]
                            _message.append(
                                Content(
                                    role="user",
                                    parts=[
                                        Part.from_text(message["content"][0]["text"]),
                                        Part.from_data(data=encoded_image, mime_type="image/jpeg"),
                                    ],
                                )
                            )
                    except KeyError:
                        cprint("WARNING: 未対応です", color="yellow", background=True)
                    except IndexError:
                        cprint("WARNING: 未対応です", color="yellow", background=True)
                    except Exception as e:
                        cprint(e, color="red", background=True)
            elif message["role"] == "assistant":
                if isinstance(message["content"], str):
                    _message.append(Content(role="model", parts=[Part.from_text(message["content"])]))
            else:
                cprint("WARNING: 未対応です", color="yellow", background=True)
        return _system, _message

    def _convert_finish_reason(self, stop_reason: Candidate.FinishReason) -> FinishReasonVertex | None:
        """
        参考記事 : https://ai.google.dev/api/python/google/ai/generativelanguage/Candidate/FinishReason

        0: FINISH_REASON_UNSPECIFIED
            Default value. This value is unused.
        1: STOP
            Natural stop point of the model or provided stop sequence.
        2: MAX_TOKENS
            The maximum number of tokens as specified in the request was reached.
        3: SAFETY
            The candidate content was flagged for safety reasons.
        4: RECITATION
            The candidate content was flagged for recitation reasons.
        5: OTHER
            Unknown reason.
        """

        if stop_reason.value in [0, 3, 4, 5]:
            return "stop"

        if stop_reason.value in [2]:
            return "length"

        return None

    def _convert_to_response(
        self, platform_response: GenerationResponse, system: str | None, message: list[Content]
    ) -> Response:
        # input 請求用文字数
        input_billable_characters = 0
        if system:
            input_billable_characters += self._count_tokens_vertex(system).total_billable_characters
        if message:
            input_billable_characters += self._count_tokens_vertex(message).total_billable_characters
        # output 請求用文字数
        output_billable_characters = 0
        if platform_response.text:
            output_billable_characters += self._count_tokens_vertex(platform_response.text).total_billable_characters
        return ChatCompletion(  # type: ignore [call-arg]
            id="",
            choices=[
                Choice(
                    index=0,
                    message=ChatCompletionMessage(
                        content=platform_response.text,
                        role="assistant",
                    ),
                    finish_reason=self._convert_finish_reason(platform_response.candidates[0].finish_reason),
                )
            ],
            created=int(time.time()),
            model=self.model,
            object="messages.create",
            system_fingerprint=None,
            usage=CompletionUsage(
                prompt_tokens=platform_response.usage_metadata.prompt_token_count,
                completion_tokens=platform_response.usage_metadata.candidates_token_count,
                total_tokens=platform_response.usage_metadata.prompt_token_count
                + platform_response.usage_metadata.candidates_token_count,
            ),
            usage_for_price=CompletionUsageForCustomPriceCalculation(
                prompt_tokens=input_billable_characters,
                completion_tokens=output_billable_characters,
                total_tokens=input_billable_characters + output_billable_characters,
            ),
        )

    def _convert_to_streamresponse(self, platform_streamresponse: Iterable[GenerationResponse]) -> StreamResponse:
        created = int(time.time())
        content: str | None = None
        for chunk in platform_streamresponse:
            content = chunk.text
            yield ChatCompletionChunk(
                id="",
                choices=[
                    ChunkChoice(
                        delta=ChoiceDelta(
                            content=content,
                            role="assistant",
                        ),
                        finish_reason=self._convert_finish_reason(chunk.candidates[0].finish_reason),
                        index=0,  # 0-indexedじゃないかもしれないので0に塗り替え
                    )
                ],
                created=created,
                model=self.model,
                object="chat.completion.chunk",
            )

    def generate(self, messages: Messages, llm_settings: LLMSettings) -> Response:
        _system, _message = self._convert_to_platform_messages(messages)
        model = GenerativeModel(
            model_name=self.model,
            system_instruction=_system,
        )

        response = model.generate_content(
            contents=_message,
            stream=False,
            generation_config=self.generate_config(llm_settings),
        )

        return self._convert_to_response(platform_response=response, system=_system, message=_message)

    def generate_stream(self, messages: Messages, llm_settings: LLMSettings) -> StreamResponse:
        _system, _message = self._convert_to_platform_messages(messages)
        model = GenerativeModel(
            model_name=self.model,
            system_instruction=_system,
        )
        response = model.generate_content(
            contents=_message,
            stream=True,
            generation_config=self.generate_config(llm_settings),
        )
        return self._convert_to_streamresponse(platform_streamresponse=response)