File size: 9,585 Bytes
46c348b
8e20df2
 
 
 
 
46c348b
8e20df2
 
 
d5ac512
33afc2e
d5ac512
 
 
8e20df2
58f2cea
8e20df2
 
 
 
 
 
 
 
 
ee39452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e20df2
ee39452
 
 
 
 
 
8e20df2
 
ee39452
8e20df2
d5ac512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27ef2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ac512
cf4099e
d5ac512
1d2cbea
 
 
8e20df2
 
 
 
 
07fe9aa
8e20df2
 
 
 
 
 
 
 
8b54974
8e20df2
 
 
 
 
1d2cbea
 
ee39452
8e20df2
ee39452
 
8b54974
ee39452
d5ac512
 
ee39452
 
 
 
 
 
 
 
 
 
d5ac512
ee39452
 
6b6fc50
ee39452
 
d5ac512
ee39452
d5ac512
 
8b54974
d5ac512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b54974
d5ac512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27ef2f
d5ac512
 
 
 
 
1d2cbea
8e20df2
 
 
 
 
33482bf
8e20df2
 
 
 
 
 
 
 
 
 
 
 
 
 
8b54974
1d2cbea
8b54974
 
 
 
 
 
 
d5ac512
 
 
1d2cbea
d5ac512
 
8b54974
d5ac512
 
 
8b54974
d5ac512
8b54974
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import streamlit as st
import os
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate

from langchain_core.output_parsers import StrOutputParser

from langchain_core.runnables import RunnablePassthrough
from langchain_qdrant import QdrantVectorStore
import Raptor
from io import StringIO
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams

page = st.title("Chat with AskUSTH")

if "gemini_api" not in st.session_state:
    st.session_state.gemini_api = None

if "rag" not in st.session_state:
    st.session_state.rag = None
    
if "llm" not in st.session_state:
    st.session_state.llm = None

@st.cache_resource
def get_chat_google_model(api_key):
    os.environ["GOOGLE_API_KEY"] = api_key
    return ChatGoogleGenerativeAI(
        model="gemini-1.5-flash",
        temperature=0,
        max_tokens=None,
        timeout=None,
        max_retries=2,
    )

@st.cache_resource
def get_embedding_model():
    model_name = "bkai-foundation-models/vietnamese-bi-encoder"
    model_kwargs = {'device': 'cpu'}
    encode_kwargs = {'normalize_embeddings': False}
    
    model = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs
    )   
    return model

if "embd" not in st.session_state:
    st.session_state.embd = get_embedding_model()

@st.cache_resource
def load_chromadb(collection_name):
    client = QdrantClient(
    url="https://da9fadd2-dc5a-4481-ac79-4e2677a2354b.europe-west3-0.gcp.cloud.qdrant.io", 
    api_key="X_-IVToBM07Mot4Mmzg5xNjYzc1DlIgl0VQDUNmGhI_Z-WA5FJ2ETA" 
)

    client.recreate_collection(
        collection_name=collection_name, 
        vectors_config=VectorParams(size=768, distance=Distance.COSINE) 
    )
    db = QdrantVectorStore(
        client=client,
        collection_name=collection_name,
        embedding=st.session_state.embd,
    )
    return db

@st.cache_resource
def update_chromadb(collection_name):
    client = QdrantClient(
    url="https://da9fadd2-dc5a-4481-ac79-4e2677a2354b.europe-west3-0.gcp.cloud.qdrant.io", 
    api_key="X_-IVToBM07Mot4Mmzg5xNjYzc1DlIgl0VQDUNmGhI_Z-WA5FJ2ETA" 
    )
    
    try:
        client.delete_collection(collection_name=collection_name)
    except Exception as e:
        print(f"Warning: {e}")

    client.recreate_collection(
        collection_name=collection_name, 
        vectors_config=VectorParams(size=768, distance=Distance.COSINE) 
    )
    db = QdrantVectorStore(
        client=client,
        collection_name=collection_name,
        embedding=st.session_state.embd,
    )
    return db

if "vector_store" not in st.session_state:
    st.session_state.vector_store = load_chromadb("data")

if "model" not in st.session_state:
    st.session_state.model = None

if "save_dir" not in st.session_state:
    st.session_state.save_dir = None 

if "uploaded_files" not in st.session_state:
    st.session_state.uploaded_files = set()
    
@st.dialog("Setup Gemini")
def vote():
    st.markdown(
        """
        Để sử dụng Google Gemini, bạn cần cung cấp API key. Tạo key của bạn [tại đây](https://ai.google.dev/gemini-api/docs/get-started/tutorial?lang=python&hl=vi) và dán vào bên dưới.
        """
    )
    key = st.text_input("Key:", "")
    if st.button("Save") and key != "":
        st.session_state.gemini_api = key
        st.rerun()  

if st.session_state.gemini_api is None:
    vote()

if st.session_state.gemini_api and st.session_state.model is None:
    st.session_state.model = get_chat_google_model(st.session_state.gemini_api)

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

@st.cache_resource
def rag_chain(_model, _vectorstore):
    retriever = _vectorstore.as_retriever()
    template = """
        Bạn là một trợ lí AI hỗ trợ tuyển sinh và sinh viên. \n
        Hãy trả lời câu hỏi chính xác, tập trung vào thông tin liên quan đến câu hỏi. \n
        Nếu bạn không biết câu trả lời, hãy nói không biết, đừng cố tạo ra câu trả lời.\n
        Dưới đây là thông tin liên quan mà bạn cần sử dụng tới:\n
        {context}\n
        hãy trả lời:\n
        {question}
        """
    prompt = PromptTemplate(template=template, input_variables=["context", "question"])
    rag = (
        {"context": retriever | format_docs, "question": RunnablePassthrough()}
        | prompt
        | _model
        | StrOutputParser()
    )
    return rag

if st.session_state.model is not None and st.session_state.vector_store is not None:
    st.session_state.rag = rag_chain(st.session_state.model, st.session_state.vector_store)

if "new_docs" not in st.session_state:
    st.session_state.new_docs = False

with st.sidebar:
    uploaded_files = st.file_uploader("Chọn file txt", accept_multiple_files=True, type=["txt"])   
    if st.session_state.model:
        documents = []
        uploaded_file_names = set()
        if uploaded_files:
            for uploaded_file in uploaded_files:
                uploaded_file_names.add(uploaded_file.name)      
        if uploaded_file_names != st.session_state.uploaded_files and not st.session_state.new_docs:
            st.session_state.uploaded_files = uploaded_file_names
            st.session_state.new_docs = True
            if uploaded_files:
                for uploaded_file in uploaded_files: 
                    stringio=StringIO(uploaded_file.getvalue().decode('utf-8'))
                    read_data=str(stringio.read())
                    documents.append(read_data)
                
def update_rag_chain(_model, _embd, _vectorstore, docs_texts):
    results = Raptor.recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
    all_texts = docs_texts.copy()
    for level in sorted(results.keys()):
        summaries = results[level][1]["summaries"].tolist()
        all_texts.extend(summaries)
    _vectorstore.add_texts(texts=all_texts)
    rag = rag_chain(_model, _vectorstore)
    return rag

def reset_rag_chain(_model, _vectorstore):
    rag = rag_chain(_model, _vectorstore)
    return rag

if "query_router" not in st.session_state:
    st.session_state.query_router = None  

@st.cache_resource
def query_router(_model):
    mess = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                """Bạn là một chatbot hỗ trợ giải đáp về đại học, nhiệm vụ của bạn là phân loại câu hỏi. 
                Nếu câu hỏi về đại học thì trả về 'university', nếu không liên quan tới tuyển sinh và sinh viên thì trả về 'other'. 
                Bắt buộc Kết quả chỉ trả về với một trong hai lựa chọn trên. 
                Không được trả lời thêm bất kỳ thông tin nào khác.""",
            ),
            ("human", "{input}"),
        ]
    )
    chain = mess | _model
    return chain

if st.session_state.model is not None:
    st.session_state.query_router = query_router(st.session_state.model)

@st.dialog("Update DB")
def update_vectorstore(_model, _embd, _vectorstore, docs):
    docs_texts = [d for d in docs]
    st.session_state.rag = update_rag_chain(_model, _embd, _vectorstore, docs_texts)   
    st.rerun()  
    
@st.dialog("Reset DB")
def reset_vectorstore(_model, _vectorstore):
    st.session_state.rag = reset_rag_chain(_model, _vectorstore) 
    st.rerun()

if st.session_state.new_docs:
    st.session_state.new_docs = False
    st.session_state.vector_store = update_chromadb("data")
    if st.session_state.uploaded_files:
        update_vectorstore(st.session_state.model, st.session_state.embd, st.session_state.vector_store, documents)
    else:
        reset_vectorstore(st.session_state.model, st.session_state.vector_store)
    
if st.session_state.model is not None:
    if st.session_state.llm is None:
        mess = ChatPromptTemplate.from_messages(
            [
                (
                    "system",
                    "Bản là một trợ lí AI hỗ trợ tuyển sinh và sinh viên",
                ),
                ("human", "{input}"),
            ]
        )
        chain = mess | st.session_state.model
        st.session_state.llm = chain

if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

for message in st.session_state.chat_history:
    with st.chat_message(message["role"]):
        st.write(message["content"])

prompt = st.chat_input("Bạn muốn hỏi gì?")
if st.session_state.model is not None:
    if prompt:
        st.session_state.chat_history.append({"role": "user", "content": prompt})
            
        with st.chat_message("user"):
            st.write(prompt)
            
        with st.chat_message("assistant"):
            router = st.session_state.query_router.invoke(prompt)
            switch = router.content
            if "university" in switch:
                respone = st.session_state.rag.invoke(prompt)
                f_response = f"RAG: {respone}"
                st.write(f_response)
            else: 
                respone = st.session_state.llm.invoke(prompt)
                f_response = f"other: {respone.content}"
                st.write(f_response)
                
        st.session_state.chat_history.append({"role": "assistant", "content": f_response})