Spaces:
Sleeping
Sleeping
from sklearn.mixture import GaussianMixture | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from typing import Dict, List, Optional, Tuple | |
import numpy as np | |
import pandas as pd | |
import umap | |
def global_cluster_embeddings( | |
embeddings: np.ndarray, | |
dim: int, | |
n_neighbors: Optional[int] = None, | |
metric: str = "cosine", | |
) -> np.ndarray: | |
if n_neighbors is None: | |
n_neighbors = int((len(embeddings) - 1) ** 0.5) | |
return umap.UMAP( | |
n_neighbors=n_neighbors, n_components=dim, metric=metric | |
).fit_transform(embeddings) | |
def local_cluster_embeddings( | |
embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine" | |
) -> np.ndarray: | |
return umap.UMAP( | |
n_neighbors=num_neighbors, n_components=dim, metric=metric | |
).fit_transform(embeddings) | |
def get_optimal_clusters( | |
embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200 | |
) -> int: | |
max_clusters = min(max_clusters, len(embeddings)) | |
n_clusters = np.arange(1, max_clusters) | |
bics = [] | |
for n in n_clusters: | |
gm = GaussianMixture(n_components=n, random_state=random_state) | |
gm.fit(embeddings) | |
bics.append(gm.bic(embeddings)) | |
return n_clusters[np.argmin(bics)] | |
def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0): | |
n_clusters = get_optimal_clusters(embeddings, random_state = 200) | |
gm = GaussianMixture(n_components=n_clusters, random_state=random_state) | |
gm.fit(embeddings) | |
probs = gm.predict_proba(embeddings) | |
labels = [np.where(prob > threshold)[0] for prob in probs] | |
return labels, n_clusters | |
def perform_clustering( | |
embeddings: np.ndarray, | |
dim: int, | |
threshold: float, | |
) -> List[np.ndarray]: | |
if len(embeddings) <= dim + 1: | |
return [np.array([0]) for _ in range(len(embeddings))] | |
reduced_embeddings_global = global_cluster_embeddings(embeddings, dim) | |
global_clusters, n_global_clusters = GMM_cluster( | |
reduced_embeddings_global, threshold | |
) | |
all_local_clusters = [np.array([]) for _ in range(len(embeddings))] | |
total_clusters = 0 | |
for i in range(n_global_clusters): | |
global_cluster_embeddings_ = embeddings[ | |
np.array([i in gc for gc in global_clusters]) | |
] | |
if len(global_cluster_embeddings_) == 0: | |
continue | |
if len(global_cluster_embeddings_) <= dim + 1: | |
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_] | |
n_local_clusters = 1 | |
else: | |
reduced_embeddings_local = local_cluster_embeddings( | |
global_cluster_embeddings_, dim | |
) | |
local_clusters, n_local_clusters = GMM_cluster( | |
reduced_embeddings_local, threshold | |
) | |
for j in range(n_local_clusters): | |
local_cluster_embeddings_ = global_cluster_embeddings_[ | |
np.array([j in lc for lc in local_clusters]) | |
] | |
indices = np.where( | |
(embeddings == local_cluster_embeddings_[:, None]).all(-1) | |
)[1] | |
for idx in indices: | |
all_local_clusters[idx] = np.append( | |
all_local_clusters[idx], j + total_clusters | |
) | |
total_clusters += n_local_clusters | |
return all_local_clusters | |
def embed(embd,texts): | |
text_embeddings = embd.embed_documents(texts) | |
text_embeddings_np = np.array(text_embeddings) | |
return text_embeddings_np | |
def embed_cluster_texts(embd,texts): | |
text_embeddings_np = embed(embd,texts) # Generate embeddings | |
cluster_labels = perform_clustering( | |
text_embeddings_np, 10, 0.1 | |
) | |
df = pd.DataFrame() # Initialize a DataFrame to store the results | |
df["text"] = texts # Store original texts | |
df["embd"] = list(text_embeddings_np) # Store embeddings as a list in the DataFrame | |
df["cluster"] = cluster_labels # Store cluster labels | |
return df | |
def fmt_txt(df: pd.DataFrame) -> str: | |
unique_txt = df["text"].tolist() | |
return "--- --- \n --- --- ".join(unique_txt) | |
def embed_cluster_summarize_texts(model,embd, | |
texts: List[str], level: int | |
) -> Tuple[pd.DataFrame, pd.DataFrame]: | |
df_clusters = embed_cluster_texts(embd,texts) | |
expanded_list = [] | |
for index, row in df_clusters.iterrows(): | |
for cluster in row["cluster"]: | |
expanded_list.append( | |
{"text": row["text"], "embd": row["embd"], "cluster": cluster} | |
) | |
expanded_df = pd.DataFrame(expanded_list) | |
all_clusters = expanded_df["cluster"].unique() | |
template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây. | |
Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học. | |
Tài liệu: | |
{context} | |
""" | |
prompt = ChatPromptTemplate.from_template(template) | |
chain = prompt | model | StrOutputParser() | |
summaries = [] | |
for i in all_clusters: | |
df_cluster = expanded_df[expanded_df["cluster"] == i] | |
formatted_txt = fmt_txt(df_cluster) | |
summaries.append(chain.invoke({"context": formatted_txt})) | |
df_summary = pd.DataFrame( | |
{ | |
"summaries": summaries, | |
"level": [level] * len(summaries), | |
"cluster": list(all_clusters), | |
} | |
) | |
return df_clusters, df_summary | |
def recursive_embed_cluster_summarize(model,embd, | |
texts: List[str], level: int = 1, n_levels: int = 3 | |
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]: | |
results = {} | |
df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level) | |
results[level] = (df_clusters, df_summary) | |
unique_clusters = df_summary["cluster"].nunique() | |
if level < n_levels and unique_clusters > 1: | |
new_texts = df_summary["summaries"].tolist() | |
next_level_results = recursive_embed_cluster_summarize(model,embd, | |
new_texts, level + 1, n_levels | |
) | |
results.update(next_level_results) | |
return results |