File size: 10,925 Bytes
5a3e8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Import required modules
import streamlit as st
from ultralytics import YOLO
from PIL import Image
import os
import json
import logging
import tempfile
import pandas as pd
import matplotlib.pyplot as plt

st.set_page_config(
    page_title="Fish Detector",
    page_icon="🐟",
    layout="wide"
)
sample_images_folder = "./images/sample_images"
logging.basicConfig(level=logging.INFO)

# Model loading
model_folder = "./models"
st.sidebar.title("🐟 Fish or No Fish Detector")
st.sidebar.markdown("""
### For more information:
- Contact: Michael.Akridge@NOAA.gov
- Visit the [GitHub repository](https://github.com/MichaelAkridge-NOAA/Fish-or-No-Fish-Detector/)
""")
# Display model links
st.sidebar.markdown("### Model Links")
st.sidebar.markdown("- [YOLO11 Fish Detector - Grayscale](https://huggingface.co/akridge/yolo11-fish-detector-grayscale)")
st.sidebar.markdown("- [YOLO11 Segment Fish - Grayscale](https://huggingface.co/akridge/yolo11-segment-fish-grayscale)")
model_name = st.sidebar.selectbox("Select a YOLO model", os.listdir(model_folder))
model_path = os.path.join(model_folder, model_name)
if not os.path.exists(model_path):
    st.error(f"Model file not found at {model_path}. Please check your setup.")
    st.stop()
model = YOLO(model_path)

# Sidebar configuration
st.sidebar.header("Model Parameters")
confidence = st.sidebar.slider("Detection Confidence Threshold", 0.0, 1.0, 0.35)
final_confidence = st.sidebar.slider("Final Yes/No Confidence Threshold", 0.0, 1.0, 0.5)

# Title and description
st.title("🐟 Fish or No Fish Detector (grayscale)")
st.write("""
Is there a fish 🐟 or not? Upload one or more grayscale images to detect fish. Using a trained [Ultralytics YOLO11 Model](https://github.com/ultralytics/ultralytics) for its object detection capabilities.

""")

# Custom CSS for button and uploader alignment
st.markdown("""
    <style>
    .custom-file-uploader {
        display: flex;
        align-items: center;
        margin-top: -10px; /* Adjust to move button closer */
        justify-content: flex-start;
    }
    .css-1cpxqw2 {
        flex-grow: 1;  /* Let file uploader take remaining space */
    }
    .sample-button {
        font-size: 14px;
        padding: 8px;
        background-color: #007BFF;
        color: white;
        border: none;
        border-radius: 5px;
        cursor: pointer;
        margin-left: 10px;
        height: 38px; /* Ensure button matches uploader height */
    }
    .sample-button:hover {
        background-color: #0056b3;
    }
    </style>
""", unsafe_allow_html=True)

# Custom CSS for default button styling
st.markdown("""
    <style>
    .stButton>button, .stDownloadButton>button {
        width: 100%;
        padding: 10px;
        border-radius: 5px;
        font-size: 18px;
        font-weight: bold;
        background-color: #007BFF;
        color: white;
        border: none;
        cursor: pointer;
    }
    .stButton>button:hover, .stDownloadButton>button:hover {
        background-color: #0056b3;
    }
    </style>
""", unsafe_allow_html=True)
# Load sample images function
def load_sample_images():
    return [os.path.join(sample_images_folder, img) for img in os.listdir(sample_images_folder) if img.lower().endswith(('png', 'jpg', 'jpeg'))]

# Prediction function
def run(image_path):
    results = model.predict(image_path, conf=confidence)
    boxes = []
    fish_count = 0
    confidences = []

    for box in results[0].boxes:
        x1, y1, x2, y2 = box.xyxy[0].tolist()
        conf = box.conf[0].item()
        class_id = int(box.cls[0].item())
        class_label = model.names[class_id].lower()  # Normalize to lowercase

        if class_label == "fish" and conf > confidence:
            fish_count += 1
        confidences.append(conf)

        boxes.append({"x1": x1, "y1": y1, "x2": x2, "y2": y2, "confidence": conf, "class_id": class_id, "class_label": class_label})

    return results[0].plot()[:, :, ::-1], {"fish_count": fish_count, "confidences": confidences}

# Process images function with directory creation
# Reusable function to handle multiple image uploads and display results
def process_images(uploaded_files):
    all_detections = []
    result_images = []
    summary_data = []
    confidences = []
    temp_dir = tempfile.gettempdir()

    for uploaded_file in uploaded_files:
        if isinstance(uploaded_file, str):  # Check if it's a sample image path
            image_path = uploaded_file
            image = Image.open(image_path)
        else:
            image = Image.open(uploaded_file)
            image_path = os.path.join(temp_dir, f"{uploaded_file.name}")
            image.save(image_path)

        st.write(f"Detecting in {os.path.basename(image_path)}...")
        with st.spinner('Running detection...'):
            result_image, detection_metadata = run(image_path)

        if result_image is not None:
            result_images.append((result_image, os.path.basename(image_path)))
            all_detections.append(detection_metadata)

            summary_data.append({
                "image_name": os.path.basename(image_path),
                "fish_detected": detection_metadata["fish_count"] > 0,
                "fish_count": detection_metadata["fish_count"]
            })

            confidences.extend(detection_metadata["confidences"])

            # Display fish status
            fish_detected = detection_metadata['fish_count'] > 0
            fish_status = f"<b><span style='color: green; font-size: 24px;'>YES</span></b> 🐟" if fish_detected else f"<b><span style='color: red; font-size: 24px;'>NO</span></b>"

            st.markdown(f"**Summary for {os.path.basename(image_path)}:** Fish detected: {fish_status}", unsafe_allow_html=True)

            # Display images side by side
            col1, col2 = st.columns(2)
            with col1:
                st.image(image, caption=f"Uploaded Image - {os.path.basename(image_path)}", use_column_width=True)
            with col2:
                st.image(result_image, caption=f"Detection Results - {os.path.basename(image_path)}", use_column_width=True)

            st.success(f"Detection completed for {os.path.basename(image_path)} successfully! 🐟")

        else:
            st.warning(f"No marine ecosystems detected in {os.path.basename(image_path)}.")

    st.session_state["all_detections"] = all_detections
    return summary_data, confidences


# Function to display a summary table and scatter plot side by side with image labels
def display_summary(summary_data, confidences):
    if summary_data:
        df = pd.DataFrame(summary_data)

        col1, col2 = st.columns(2)

        with col1:
            st.subheader("Summary of Detections")
            st.table(df[["image_name", "fish_count"]])

        with col2:
            st.subheader("Fish Detection Confidence Levels")
            fig, ax = plt.subplots()
            confidence_index = 0

            for i, row in df.iterrows():
                num_confidences_for_image = len([c for c in confidences[confidence_index:confidence_index + row["fish_count"]]])

                for j in range(num_confidences_for_image):
                    if confidence_index < len(confidences):
                        ax.scatter(confidence_index, confidences[confidence_index], c='blue')
                        ax.text(confidence_index, confidences[confidence_index], row['image_name'], 
                                fontsize=10, ha='center', va='bottom', rotation=0)
                        confidence_index += 1

            ax.axhline(final_confidence, color='red', linestyle='--', label=f'Final Threshold ({final_confidence})')
            ax.set_xlabel('Detections')
            ax.set_ylabel('Confidence Level')
            ax.legend(loc='lower left')
            st.pyplot(fig)

        if st.session_state.get("all_detections"):
            json_data = json.dumps(st.session_state["all_detections"], indent=4)
            st.download_button(
                label="Download Results as JSON & Reset",
                data=json_data,
                file_name="all_detections.json",
                mime="application/json",
                key="download_json_bottom"
            )

# Image uploader with multiple file support
st.markdown('<div class="custom-file-uploader">', unsafe_allow_html=True)
uploaded_files = st.file_uploader("Choose image(s)...", type=["png", "jpg", "jpeg"], accept_multiple_files=True)

# Check if files are uploaded, hide the "Auto Run with Sample Images" button if they are
if not uploaded_files and not st.session_state.get('use_sample_images', False):
    use_sample_images = st.button("Or Auto Run Using Sample Images", key="sample_button")
else:
    use_sample_images = None
st.markdown('</div>', unsafe_allow_html=True)

# Add the functionality for the "Try it with Sample Images" button
if use_sample_images:
    sample_images = load_sample_images()
    st.session_state['use_sample_images'] = True
    for sample_image in sample_images:
        st.session_state.setdefault('uploaded_files', []).append(sample_image)
    st.session_state['run_automatically'] = True

# Display the Run, Clear, and Download buttons with enhanced styling
if uploaded_files or st.session_state.get('uploaded_files'):
    col1, col2, col3 = st.columns([1, 1, 1], gap="small")

    if not st.session_state.get('use_sample_images', False):
        with col1:
            run_button = st.button("Click to Run", key="run_button")
    else:
        run_button = None

    # Initialize clear_button to None to avoid NameError
    clear_button = None

    # Conditionally hide the "Clear Results" button while processing
    with col2:
        if not st.session_state.get('processing', False):
            clear_button = st.button("Clear Results", key="clear_button")

    # Run automatically if triggered by the sample images button or the run button
    if run_button or st.session_state.get('run_automatically'):
        st.session_state['processing'] = True  # Set the processing flag
        summary_data, confidences = process_images(uploaded_files or st.session_state['uploaded_files'])
        display_summary(summary_data, confidences)
        st.session_state['processing'] = False  # Reset the processing flag after processing is done
        st.session_state['run_automatically'] = False
        st.session_state['use_sample_images'] = False

    # Now this check will work, even if clear_button is not defined earlier
    if clear_button:
        st.session_state.clear()

    if st.session_state.get("all_detections"):
        with col3:
            json_data = json.dumps(st.session_state["all_detections"], indent=4)
            st.download_button(
                label="Download Results as JSON & Reset",
                data=json_data,
                file_name="all_detections.json",
                mime="application/json",
                key="download_json"
            )