Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from chemical import INIT_CRDS | |
PARAMS = { | |
"DMIN" : 2.0, | |
"DMAX" : 20.0, | |
"DBINS" : 36, | |
"ABINS" : 36, | |
} | |
# ============================================================ | |
def get_pair_dist(a, b): | |
"""calculate pair distances between two sets of points | |
Parameters | |
---------- | |
a,b : pytorch tensors of shape [batch,nres,3] | |
store Cartesian coordinates of two sets of atoms | |
Returns | |
------- | |
dist : pytorch tensor of shape [batch,nres,nres] | |
stores paitwise distances between atoms in a and b | |
""" | |
dist = torch.cdist(a, b, p=2) | |
return dist | |
# ============================================================ | |
def get_ang(a, b, c): | |
"""calculate planar angles for all consecutive triples (a[i],b[i],c[i]) | |
from Cartesian coordinates of three sets of atoms a,b,c | |
Parameters | |
---------- | |
a,b,c : pytorch tensors of shape [batch,nres,3] | |
store Cartesian coordinates of three sets of atoms | |
Returns | |
------- | |
ang : pytorch tensor of shape [batch,nres] | |
stores resulting planar angles | |
""" | |
v = a - b | |
w = c - b | |
v /= torch.norm(v, dim=-1, keepdim=True) | |
w /= torch.norm(w, dim=-1, keepdim=True) | |
vw = torch.sum(v*w, dim=-1) | |
return torch.acos(vw) | |
# ============================================================ | |
def get_dih(a, b, c, d): | |
"""calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i]) | |
given Cartesian coordinates of four sets of atoms a,b,c,d | |
Parameters | |
---------- | |
a,b,c,d : pytorch tensors of shape [batch,nres,3] | |
store Cartesian coordinates of four sets of atoms | |
Returns | |
------- | |
dih : pytorch tensor of shape [batch,nres] | |
stores resulting dihedrals | |
""" | |
b0 = a - b | |
b1 = c - b | |
b2 = d - c | |
b1 /= torch.norm(b1, dim=-1, keepdim=True) | |
v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1 | |
w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1 | |
x = torch.sum(v*w, dim=-1) | |
y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1) | |
return torch.atan2(y, x) | |
# ============================================================ | |
def xyz_to_c6d(xyz, params=PARAMS): | |
"""convert cartesian coordinates into 2d distance | |
and orientation maps | |
Parameters | |
---------- | |
xyz : pytorch tensor of shape [batch,nres,3,3] | |
stores Cartesian coordinates of backbone N,Ca,C atoms | |
Returns | |
------- | |
c6d : pytorch tensor of shape [batch,nres,nres,4] | |
stores stacked dist,omega,theta,phi 2D maps | |
""" | |
batch = xyz.shape[0] | |
nres = xyz.shape[1] | |
# three anchor atoms | |
N = xyz[:,:,0] | |
Ca = xyz[:,:,1] | |
C = xyz[:,:,2] | |
# recreate Cb given N,Ca,C | |
b = Ca - N | |
c = C - Ca | |
a = torch.cross(b, c, dim=-1) | |
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca | |
# 6d coordinates order: (dist,omega,theta,phi) | |
c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device) | |
dist = get_pair_dist(Cb,Cb) | |
dist[torch.isnan(dist)] = 999.9 | |
c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...] | |
b,i,j = torch.where(c6d[...,0]<params['DMAX']) | |
c6d[b,i,j,torch.full_like(b,1)] = get_dih(Ca[b,i], Cb[b,i], Cb[b,j], Ca[b,j]) | |
c6d[b,i,j,torch.full_like(b,2)] = get_dih(N[b,i], Ca[b,i], Cb[b,i], Cb[b,j]) | |
c6d[b,i,j,torch.full_like(b,3)] = get_ang(Ca[b,i], Cb[b,i], Cb[b,j]) | |
# fix long-range distances | |
c6d[...,0][c6d[...,0]>=params['DMAX']] = 999.9 | |
mask = torch.zeros((batch, nres,nres), dtype=xyz.dtype, device=xyz.device) | |
mask[b,i,j] = 1.0 | |
return c6d, mask | |
def xyz_to_t2d(xyz_t, params=PARAMS): | |
"""convert template cartesian coordinates into 2d distance | |
and orientation maps | |
Parameters | |
---------- | |
xyz_t : pytorch tensor of shape [batch,templ,nres,3,3] | |
stores Cartesian coordinates of template backbone N,Ca,C atoms | |
Returns | |
------- | |
t2d : pytorch tensor of shape [batch,nres,nres,37+6+3] | |
stores stacked dist,omega,theta,phi 2D maps | |
""" | |
B, T, L = xyz_t.shape[:3] | |
c6d, mask = xyz_to_c6d(xyz_t[:,:,:,:3].view(B*T,L,3,3), params=params) | |
c6d = c6d.view(B, T, L, L, 4) | |
mask = mask.view(B, T, L, L, 1) | |
# | |
# dist to one-hot encoded | |
dist = dist_to_onehot(c6d[...,0], params) | |
orien = torch.cat((torch.sin(c6d[...,1:]), torch.cos(c6d[...,1:])), dim=-1)*mask # (B, T, L, L, 6) | |
# | |
mask = ~torch.isnan(c6d[:,:,:,:,0]) # (B, T, L, L) | |
t2d = torch.cat((dist, orien, mask.unsqueeze(-1)), dim=-1) | |
t2d[torch.isnan(t2d)] = 0.0 | |
return t2d | |
def xyz_to_chi1(xyz_t): | |
'''convert template cartesian coordinates into chi1 angles | |
Parameters | |
---------- | |
xyz_t: pytorch tensor of shape [batch, templ, nres, 14, 3] | |
stores Cartesian coordinates of template atoms. For missing atoms, it should be NaN | |
Returns | |
------- | |
chi1 : pytorch tensor of shape [batch, templ, nres, 2] | |
stores cos and sin chi1 angle | |
''' | |
B, T, L = xyz_t.shape[:3] | |
xyz_t = xyz_t.reshape(B*T, L, 14, 3) | |
# chi1 angle: N, CA, CB, CG | |
chi1 = get_dih(xyz_t[:,:,0], xyz_t[:,:,1], xyz_t[:,:,4], xyz_t[:,:,5]) # (B*T, L) | |
cos_chi1 = torch.cos(chi1) | |
sin_chi1 = torch.sin(chi1) | |
mask_chi1 = ~torch.isnan(chi1) | |
chi1 = torch.stack((cos_chi1, sin_chi1, mask_chi1), dim=-1) # (B*T, L, 3) | |
chi1[torch.isnan(chi1)] = 0.0 | |
chi1 = chi1.reshape(B, T, L, 3) | |
return chi1 | |
def xyz_to_bbtor(xyz, params=PARAMS): | |
batch = xyz.shape[0] | |
nres = xyz.shape[1] | |
# three anchor atoms | |
N = xyz[:,:,0] | |
Ca = xyz[:,:,1] | |
C = xyz[:,:,2] | |
# recreate Cb given N,Ca,C | |
next_N = torch.roll(N, -1, dims=1) | |
prev_C = torch.roll(C, 1, dims=1) | |
phi = get_dih(prev_C, N, Ca, C) | |
psi = get_dih(N, Ca, C, next_N) | |
# | |
phi[:,0] = 0.0 | |
psi[:,-1] = 0.0 | |
# | |
astep = 2.0*np.pi / params['ABINS'] | |
phi_bin = torch.round((phi+np.pi-astep/2)/astep) | |
psi_bin = torch.round((psi+np.pi-astep/2)/astep) | |
return torch.stack([phi_bin, psi_bin], axis=-1).long() | |
# ============================================================ | |
def dist_to_onehot(dist, params=PARAMS): | |
dist[torch.isnan(dist)] = 999.9 | |
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] | |
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=dist.dtype,device=dist.device) | |
db = torch.bucketize(dist.contiguous(),dbins).long() | |
dist = torch.nn.functional.one_hot(db, num_classes=params['DBINS']+1).float() | |
return dist | |
def c6d_to_bins(c6d,params=PARAMS): | |
"""bin 2d distance and orientation maps | |
""" | |
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] | |
astep = 2.0*np.pi / params['ABINS'] | |
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device) | |
ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device) | |
ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device) | |
db = torch.bucketize(c6d[...,0].contiguous(),dbins) | |
ob = torch.bucketize(c6d[...,1].contiguous(),ab360) | |
tb = torch.bucketize(c6d[...,2].contiguous(),ab360) | |
pb = torch.bucketize(c6d[...,3].contiguous(),ab180) | |
ob[db==params['DBINS']] = params['ABINS'] | |
tb[db==params['DBINS']] = params['ABINS'] | |
pb[db==params['DBINS']] = params['ABINS']//2 | |
return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8) | |
# ============================================================ | |
def dist_to_bins(dist,params=PARAMS): | |
"""bin 2d distance maps | |
""" | |
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] | |
db = torch.round((dist-params['DMIN']-dstep/2)/dstep) | |
db[db<0] = 0 | |
db[db>params['DBINS']] = params['DBINS'] | |
return db.long() | |
# ============================================================ | |
def c6d_to_bins2(c6d, same_chain, negative=False, params=PARAMS): | |
"""bin 2d distance and orientation maps | |
""" | |
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] | |
astep = 2.0*np.pi / params['ABINS'] | |
db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep) | |
ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep) | |
tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep) | |
pb = torch.round((c6d[...,3]-astep/2)/astep) | |
# put all d<dmin into one bin | |
db[db<0] = 0 | |
# synchronize no-contact bins | |
db[db>params['DBINS']] = params['DBINS'] | |
ob[db==params['DBINS']] = params['ABINS'] | |
tb[db==params['DBINS']] = params['ABINS'] | |
pb[db==params['DBINS']] = params['ABINS']//2 | |
if negative: | |
db = torch.where(same_chain.bool(), db.long(), params['DBINS']) | |
ob = torch.where(same_chain.bool(), ob.long(), params['ABINS']) | |
tb = torch.where(same_chain.bool(), tb.long(), params['ABINS']) | |
pb = torch.where(same_chain.bool(), pb.long(), params['ABINS']//2) | |
return torch.stack([db,ob,tb,pb],axis=-1).long() | |
def get_init_xyz(xyz_t): | |
# input: xyz_t (B, T, L, 14, 3) | |
# ouput: xyz (B, T, L, 14, 3) | |
B, T, L = xyz_t.shape[:3] | |
init = INIT_CRDS.to(xyz_t.device).reshape(1,1,1,27,3).repeat(B,T,L,1,1) | |
if torch.isnan(xyz_t).all(): | |
return init | |
mask = torch.isnan(xyz_t[:,:,:,:3]).any(dim=-1).any(dim=-1) # (B, T, L) | |
# | |
center_CA = ((~mask[:,:,:,None]) * torch.nan_to_num(xyz_t[:,:,:,1,:])).sum(dim=2) / ((~mask[:,:,:,None]).sum(dim=2)+1e-4) # (B, T, 3) | |
xyz_t = xyz_t - center_CA.view(B,T,1,1,3) | |
# | |
idx_s = list() | |
for i_b in range(B): | |
for i_T in range(T): | |
if mask[i_b, i_T].all(): | |
continue | |
exist_in_templ = torch.where(~mask[i_b, i_T])[0] # (L_sub) | |
seqmap = (torch.arange(L, device=xyz_t.device)[:,None] - exist_in_templ[None,:]).abs() # (L, L_sub) | |
seqmap = torch.argmin(seqmap, dim=-1) # (L) | |
idx = torch.gather(exist_in_templ, -1, seqmap) # (L) | |
offset_CA = torch.gather(xyz_t[i_b, i_T, :, 1, :], 0, idx.reshape(L,1).expand(-1,3)) | |
init[i_b,i_T] += offset_CA.reshape(L,1,3) | |
# | |
xyz = torch.where(mask.view(B, T, L, 1, 1), init, xyz_t) | |
return xyz | |