Spaces:
Sleeping
Sleeping
# import tensorflow as tf | |
# def create_model(): | |
# LAYERS = [tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"), | |
# tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"), | |
# tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"), | |
# tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")] | |
# model = tf.keras.models.Sequential(LAYERS) | |
# model.load_weights('./checkpoint') | |
# # LOSS_FUNCTION = tf.keras.losses.SparseCategoricalCrossentropy() # HERE | |
# # OPTIMIZER = tf.keras.optimizers.legacy.Adam() | |
# # METRICS = ["accuracy"] | |
# # model.compile(loss=LOSS_FUNCTION, | |
# # optimizer=OPTIMIZER, | |
# # metrics=METRICS) | |
# return model | |
import tensorflow as tf | |
def create_model(): | |
LAYERS = [tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"), | |
tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"), | |
tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"), | |
tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")] | |
model = tf.keras.models.Sequential(LAYERS) | |
return model | |
def load_model_weights(model, checkpoint_path): | |
model.load_weights(checkpoint_path) | |