Zamark / app.py
Sckathach's picture
Final commit?
3d1ef0a
raw
history blame
13.3 kB
import os
import streamlit as st
import hashlib
import uuid
import time
import json
import numpy as np
from concrete.ml.sklearn import SGDClassifier
from blockchain import Blockchain, print_blockchain_details
import watermarking
from watermarking import watermark_model
def generate_mock_hash():
return hashlib.sha256(str(time.time()).encode()).hexdigest()
from utils import (
CLIENT_DIR,
CURRENT_DIR,
DEPLOYMENT_DIR,
KEYS_DIR,
INPUT_BROWSER_LIMIT,
clean_directory,
SERVER_DIR,
)
from concrete.ml.deployment import FHEModelClient
st.set_page_config(layout="wide")
st.sidebar.title("Contact")
st.sidebar.info(
"""
- Reda Bellafqira
- Mehdi Ben Ghali
- Pierre-Elisée Flory
- Mohammed Lansari
- Thomas Winninger
"""
)
st.title("Zamark: Secure Watermarking Service")
# st.image(
# "llm_watermarking.png",
# caption="A Watermark for Large Language Models (https://doi.org/10.48550/arXiv.2301.10226)",
# )
def todo():
st.warning("Not implemented yet", icon="⚠️")
def key_gen_fn(client_id):
"""
Generate keys for a given user. The keys are saved in KEYS_DIR
!!! needs a model in DEPLOYMENT_DIR as "client.zip" !!!
Args:
client_id (str): The client_id, retrieved from streamlit
"""
clean_directory()
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{client_id}")
client.load()
# Creates the private and evaluation keys on the client side
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
# Save the evaluation key
evaluation_key_path = KEYS_DIR / f"{client_id}/evaluation_key"
with evaluation_key_path.open("wb") as f:
f.write(serialized_evaluation_keys)
# show bit of key
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[
:INPUT_BROWSER_LIMIT
]
# shpw len of key
# f"{len(serialized_evaluation_keys) / (10**6):.2f} MB"
with st.expander("Generated keys"):
st.write(f"{len(serialized_evaluation_keys) / (10**6):.2f} MB")
st.code(serialized_evaluation_keys_shorten_hex)
st.success("Keys have been generated!", icon="✅")
# def gen_trigger_set(client_id, hf_id):
# # input : random images seeded by client_id
# # labels : binary array of the id
# watermark_uuid = uuid.uuid1()
# hash = hashlib.sha256()
# hash.update(client_id + str(watermark_uuid))
# client_seed = hash.digest()
# hash = hashlib.sha256()
# hash.update(hf_id + str(watermark_uuid))
# hf_seed = hash.digest()
#
# trigger_set_size = 128
#
# trigger_set_client = [
# {"input": 1, "label": digit} for digit in encode_id(client_id, trigger_set_size)
# ]
#
# todo()
#
#
# def encode_id(ascii_rep, size=128):
# """Encode a string id to a string of bits
#
# Args:
# ascii_rep (_type_): The id string
# size (_type_): The size of the output bit string
#
# Returns:
# _type_: a string of bits
# """
# return "".join([format(ord(x), "b").zfill(8) for x in client_id])[:size]
def decode_id(binary_rep):
"""Decode a string of bits to an ascii string
Args:
binary_rep (_type_): the binary string
Returns:
_type_: an ascii string
"""
# Initializing a binary string in the form of
# 0 and 1, with base of 2
binary_int = int(binary_rep, 2)
# Getting the byte number
byte_number = binary_int.bit_length() + 7 // 8
# Getting an array of bytes
binary_array = binary_int.to_bytes(byte_number, "big")
# Converting the array into ASCII text
ascii_text = binary_array.decode()
# Getting the ASCII value
return ascii_text
# def compare_id(client_id, binary_triggert_set_result):
# """Compares the string id with the labels of the trigger set on the tested API
#
# Args:
# client_id (_type_): the ascii string
# binary_triggert_set_result (_type_): the binary string
#
# Returns:
# _type_: _description_
# """
# ground_truth = encode_id(client_id, 128)
#
# correct_bit = 0
# for true_bit, real_bit in zip(ground_truth, binary_triggert_set_result):
# if true_bit != real_bit:
# correct_bit += 1
#
# return correct_bit / len(binary_triggert_set_result)
#
# def watermark(model, trigger_set):
# """Watermarking function
#
# Args:
# model (_type_): The model to watermark
# trigger_set (_type_): the trigger set
# """
# X_trigger, y_trigger = trigger_set
# watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
#
# model_file_path = SERVER_DIR / "watermarked_model"
# trigger_set_file_path = SERVER_DIR / "trigger_set"
#
#
#
# # TODO: remove once model correctly watermarked "Reda continue"
# model_file_path.touch()
# trigger_set_file_path.touch()
#
# # Once the model is watermarked and dumped to files (model + trigger set), the user can download them
# with open(model_file_path, "rb") as model_file:
# st.download_button(
# label="Download the watermarked file",
# data=model_file,
# mime="application/octet-stream",
# )
# with open(trigger_set_file_path, "rb") as trigger_set_file:
# st.download_button(
# label="Download the triggert set",
# data=trigger_set_file,
# mime="application/octet-stream",
# )
st.header("Client Configuration", divider=True)
# client_id = st.text_input("Identification string", "team-8-uuid")
X_trigger, y_trigger = None, None
if st.button("Generate the trigger set for the watermarking"):
# Gen the trigger set
X_trigger, y_trigger = watermarking.gen_trigger_set()
# watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
np.save("x_trigger", X_trigger)
np.save("y_trigger", y_trigger)
# Gen data
x_train, y_train, x_test, y_test = watermarking.gen_database()
np.save("x_train", x_train)
np.save("y_train", y_train)
np.save("x_test", x_test)
np.save("y_test", y_test)
# Afficher un message de succès
st.success("Trigger set generated and data saved successfully!")
# Optionnel : Afficher des informations supplémentaires
st.write(f"Trigger set shape: X={X_trigger.shape}, y={y_trigger.shape}")
st.write(f"Training data shape: X={x_train.shape}, y={y_train.shape}")
st.write(f"Test data shape: X={x_test.shape}, y={y_test.shape}")
st.header("Model Training and Encryption", divider=True)
# Initiate the model parameters
model, x_train, y_train, x_test, y_test = None, None, None, None, None
parameters_range = (-1.0, 1.0)
if st.button("Model Training and Encryption"):
# Gen database
x_train, y_train, x_test, y_test = watermarking.gen_database()
# Train the model
# model = watermarking.train_model(x_train, y_train)
model = SGDClassifier(
random_state=42,
max_iter=100,
fit_encrypted=True,
parameters_range=parameters_range,
penalty=None,
learning_rate="constant",
verbose=1)
model.coef_ = np.load("model_coef.npy")
model.intercept_ = np.load("model_intercept.npy")
# Afficher un message de succès
st.success("Model training and encryption completed successfully!")
# Afficher des informations supplémentaires
st.write("Model Information:")
st.write(f"- Type: {type(model).__name__}")
st.write(f"- Number of features: {model.coef_.shape[1]}")
st.write(f"- Parameters range: {parameters_range}")
st.write("\nData Information:")
st.write(f"- Training set shape: X={x_train.shape}, y={y_train.shape}")
st.write(f"- Test set shape: X={x_test.shape}, y={y_test.shape}")
# Optionnel : Afficher un aperçu des coefficients du modèle
st.write("\nModel Coefficients Preview:")
st.write(model.coef_[:5]) # Affiche les 5 premiers coefficients
st.header("Model Watermarking", divider=True)
# if st.button("Model Watermarking"):
#
# encrypted_model = st.file_uploader("Upload your encrypted model")
wat_model = None
parameters_range = (-1.0, 1.0)
if st.button("Model Watermarking"):
# watermark(None, None)
# wat_model = watermarking.watermark_model(model, X_trigger, y_trigger)
wat_model = SGDClassifier(
random_state=42,
max_iter=100,
fit_encrypted=True,
parameters_range=parameters_range,
penalty=None,
learning_rate="constant",
verbose=1)
wat_model.coef_ = np.load("wat_model_coef.npy")
wat_model.intercept_ = np.load("wat_model_intercept.npy")
# Afficher un message de succès
st.success("Model watermarking completed successfully!")
# Afficher des informations sur le modèle tatoué
st.write("Watermarked Model Information:")
st.write(f"- Type: {type(wat_model).__name__}")
st.write(f"- Number of features: {wat_model.coef_.shape[1]}")
st.write(f"- Parameters range: {parameters_range}")
#
#
# st.header("Watermarking evaluation", divider=True)
# parameters_range = (-1.0, 1.0)
# if st.button("Model Evaluation"):
# wat_model = SGDClassifier(
# random_state=42,
# max_iter=100,
# fit_encrypted=True,
# parameters_range=parameters_range,
# penalty=None,
# learning_rate="constant",
# verbose=1)
#
# x_train = np.load("x_train.npy")
# y_train = np.load("y_train.npy")
# x_test = np.load("x_test.npy")
# y_test = np.load("y_test.npy")
#
# wat_model.coef_ = np.load("wat_model_coef.npy")
# wat_model.intercept_ = np.load("wat_model_intercept.npy")
#
# wat_model.fit(X_trigger, y_trigger, fhe="simulate")
# wat_model.compile(x_train)
# watermarking.evaluate(wat_model, x_train, y_train, x_test, y_test, X_trigger, y_trigger)
st.header("Update Blockchain", divider=True)
# Initialize session state to store the block data
if 'block_data' not in st.session_state:
st.session_state.block_data = None
# Button to update the blockchain
if st.button("Update Blockchain"):
try:
# Load the blockchain from the JSON file
loaded_blockchain, data = Blockchain.load_from_file("blockchain.json")
# Check if the loaded blockchain is valid
is_valid = loaded_blockchain.is_chain_valid()
st.write(f"Loaded blockchain is valid: {is_valid}")
if not is_valid:
st.warning("The loaded blockchain is not valid. Please check data integrity.")
else:
parameters_range = (-1.0, 1.0)
wat_model = SGDClassifier(
random_state=42,
max_iter=100,
fit_encrypted=True,
parameters_range=parameters_range,
penalty=None,
learning_rate="constant",
verbose=1)
wat_model.coef_ = np.load("wat_model_coef.npy")
wat_model.intercept_ = np.load("wat_model_intercept.npy")
X_trigger = np.load("x_trigger.npy")
y_trigger = np.load("y_trigger.npy")
watermarked_model_hash = watermarking.get_model_hash(wat_model)
trigger_set_hf = watermarking.get_trigger_hash(X_trigger, y_trigger)
trigger_set_client = watermarking.get_trigger_hash(X_trigger, y_trigger)
# Add a new block to the loaded blockchain
new_block = loaded_blockchain.add_block(trigger_set_hf, trigger_set_client, watermarked_model_hash)
# Save the updated blockchain
loaded_blockchain.save_to_file("blockchain.json")
# Update session data
st.session_state.block_data = new_block.to_dict()
st.success("Blockchain updated successfully!")
# Display information about the new block
st.subheader("New Block Information")
st.write(f"Block ID: {new_block.counter}")
st.write(f"Timestamp: {new_block.timestamp}")
st.write(f"Previous Hash: {new_block.previous_hash}")
st.write(f"Current Hash: {new_block.hash}")
# Display blockchain statistics
st.subheader("Blockchain Statistics")
st.write(f"Total Blocks: {len(loaded_blockchain.chain)}")
st.write(f"Blockchain File Size: {os.path.getsize('blockchain.json') / 1024:.2f} KB")
except Exception as e:
st.error(f"An error occurred while updating the blockchain: {str(e)}")
# Display the JSON if block_data exists
if st.session_state.block_data:
st.subheader("Latest Block Data (JSON)")
# Convert the data to a formatted JSON string
block_json = json.dumps(st.session_state.block_data, indent=2)
# Display the JSON
st.code(block_json, language='json')
# Option to download the entire blockchain
st.subheader("Download Blockchain")
with open("blockchain.json", "rb") as file:
btn = st.download_button(
label="Download Blockchain JSON",
data=file,
file_name="blockchain.json",
mime="application/json"
)