zhouxiangxin1998 commited on
Commit
b63a7bd
β€’
1 Parent(s): 0f14261

update (add rank)

Browse files
app.py CHANGED
@@ -9,6 +9,7 @@ from src.about import (
9
  CITATION_BUTTON_TEXT,
10
  )
11
  from src.display.css_html_js import custom_css
 
12
 
13
  from src.envs import API, REPO_ID
14
  current_dir = os.path.dirname(os.path.realpath(__file__))
@@ -44,10 +45,35 @@ in-depth evaluation framework for protein foundation models, driving their devel
44
 
45
  def convert_to_float(df):
46
  columns = df.columns
47
- for col in columns[1:]:
48
  df[col] = df[col].astype('float')
49
  return df
 
 
 
 
 
 
 
 
 
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  # ### Space initialisation
53
 
@@ -65,95 +91,94 @@ with demo:
65
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
66
  with gr.TabItem("πŸ† Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
67
  with gr.Row():
68
- inverse_folding_csv = pd.read_csv('data/inverse_folding.csv')
69
- print(convert_to_float(inverse_folding_csv))
70
  inverse_folding_table = gr.components.DataFrame(
71
  value=convert_to_float(inverse_folding_csv).values,
72
  height=99999,
73
  interactive=False,
74
  headers=inverse_folding_csv.columns.to_list(),
75
- datatype=['markdown'] + (len(inverse_folding_csv.columns)-1) * ['number'],
76
 
77
  )
78
  with gr.TabItem("πŸ† Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
79
  with gr.Row():
80
- structure_design_csv = pd.read_csv('data/structure_design.csv')
81
  structure_design_table = gr.components.DataFrame(
82
  value=convert_to_float(structure_design_csv).values,
83
  height=99999,
84
  interactive=False,
85
  headers=structure_design_csv.columns.to_list(),
86
- datatype=['markdown'] + (len(structure_design_csv.columns)-1) * ['number'],
87
  )
88
  with gr.TabItem("πŸ† Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
89
  with gr.Row():
90
- sequence_design_csv = pd.read_csv('data/sequence_design.csv')
91
  sequence_design_table = gr.components.DataFrame(
92
  value=convert_to_float(sequence_design_csv).values,
93
  height=99999,
94
  interactive=False,
95
  headers=sequence_design_csv.columns.to_list(),
96
- datatype=['markdown'] + (len(sequence_design_csv.columns)-1) * ['number'],
97
  )
98
  with gr.TabItem("πŸ† Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
99
  with gr.Row():
100
- co_design_csv = pd.read_csv('data/co_design.csv')
101
  co_design_table = gr.components.DataFrame(
102
  value=convert_to_float(co_design_csv).values,
103
  height=99999,
104
  interactive=False,
105
  headers=co_design_csv.columns.to_list(),
106
- datatype=['markdown'] + (len(co_design_csv.columns)-1) * ['number'],
107
  )
108
  with gr.TabItem("οΏ½οΏ½οΏ½οΏ½ Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
109
  with gr.Row():
110
- motif_scaffolding_csv = pd.read_csv('data/motif_scaffolding.csv')
111
  motif_scaffolding_table = gr.components.DataFrame(
112
  value=convert_to_float(motif_scaffolding_csv).values,
113
  height=99999,
114
  interactive=False,
115
  headers=motif_scaffolding_csv.columns.to_list(),
116
- datatype=['markdown'] + (len(motif_scaffolding_csv.columns)-1) * ['number'],
117
  )
118
  with gr.TabItem("πŸ† Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
119
  with gr.Row():
120
- antibody_design_csv = pd.read_csv('data/antibody_design.csv')
121
  antibody_design_table = gr.components.DataFrame(
122
  value=convert_to_float(antibody_design_csv).values,
123
  height=99999,
124
  interactive=False,
125
  headers=antibody_design_csv.columns.to_list(),
126
- datatype=['markdown'] + (len(antibody_design_csv.columns)-1) * ['number'],
127
  )
128
  with gr.TabItem("πŸ… Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
129
  with gr.Row():
130
- protein_folding_csv = pd.read_csv('data/protein_folding.csv')
131
  protein_folding_table = gr.components.DataFrame(
132
  value=convert_to_float(protein_folding_csv).values,
133
  height=99999,
134
  interactive=False,
135
  headers=protein_folding_csv.columns.to_list(),
136
- datatype=['markdown'] + (len(protein_folding_csv.columns)-1) * ['number'],
137
  )
138
  with gr.TabItem("πŸ… Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
139
  with gr.Row():
140
- multi_state_prediction_csv = pd.read_csv('data/multi_state_prediction.csv')
141
  multi_state_prediction_table = gr.components.DataFrame(
142
  value=convert_to_float(multi_state_prediction_csv).values,
143
  height=99999,
144
  interactive=False,
145
  headers=multi_state_prediction_csv.columns.to_list(),
146
- datatype=['markdown'] + (len(multi_state_prediction_csv.columns)-1) * ['number'],
147
  )
148
  with gr.TabItem("πŸ… Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
149
  with gr.Row():
150
- conformation_prediction_csv = pd.read_csv('data/conformation_prediction.csv')
151
  conformation_prediction_table = gr.components.DataFrame(
152
  value=convert_to_float(conformation_prediction_csv).values,
153
  height=99999,
154
  interactive=False,
155
  headers=conformation_prediction_csv.columns.to_list(),
156
- datatype=['markdown'] + (len(conformation_prediction_csv.columns)-1) * ['number'],
157
  )
158
 
159
 
 
9
  CITATION_BUTTON_TEXT,
10
  )
11
  from src.display.css_html_js import custom_css
12
+ import copy
13
 
14
  from src.envs import API, REPO_ID
15
  current_dir = os.path.dirname(os.path.realpath(__file__))
 
45
 
46
  def convert_to_float(df):
47
  columns = df.columns
48
+ for col in columns[2:]:
49
  df[col] = df[col].astype('float')
50
  return df
51
+
52
+
53
+ def assign_rank_and_get_sorted_csv(src_csv_path, tag_csv_path, ignore_num=0):
54
+ src_csv = pd.read_csv(src_csv_path)
55
+ float_csv = convert_to_float(copy.deepcopy(src_csv))
56
+ tag_csv = pd.read_csv(tag_csv_path)
57
+ rank_csv = pd.DataFrame()
58
+
59
+ float_csv = float_csv[ignore_num:]
60
 
61
+ for col in tag_csv.columns:
62
+ tag = int(tag_csv[col].iloc[0])
63
+ if tag == 0:
64
+ continue
65
+ float_csv[col] *= tag
66
+ float_csv[col] = float_csv[col].fillna(value=1e12)
67
+ rank_csv[col] = float_csv[col].rank(method='min')
68
+ rank_csv['__sum_of_ranks'] = rank_csv.sum(axis=1)
69
+ src_csv.insert(loc=0, column='Rank', value=-1 * np.ones(len(src_csv)))
70
+ src_csv.loc[list(range(ignore_num, len(src_csv))), 'Rank'] = rank_csv['__sum_of_ranks'].rank(method='min')
71
+ sorted_csv = src_csv.sort_values(by=["Rank"])
72
+ if ignore_num >0 :
73
+ sorted_csv.loc[list(range(ignore_num)),'Rank'] = [np.nan] * ignore_num
74
+ return sorted_csv
75
+
76
+
77
 
78
  # ### Space initialisation
79
 
 
91
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
92
  with gr.TabItem("πŸ† Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
93
  with gr.Row():
94
+ inverse_folding_csv = assign_rank_and_get_sorted_csv('data_link/inverse_folding.csv', 'data_rank/inverse_folding.csv')
 
95
  inverse_folding_table = gr.components.DataFrame(
96
  value=convert_to_float(inverse_folding_csv).values,
97
  height=99999,
98
  interactive=False,
99
  headers=inverse_folding_csv.columns.to_list(),
100
+ datatype=['number', 'markdown'] + (len(inverse_folding_csv.columns)-1) * ['number'],
101
 
102
  )
103
  with gr.TabItem("πŸ† Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
104
  with gr.Row():
105
+ structure_design_csv = assign_rank_and_get_sorted_csv('data_link/structure_design.csv','data_rank/structure_design.csv', ignore_num=1)
106
  structure_design_table = gr.components.DataFrame(
107
  value=convert_to_float(structure_design_csv).values,
108
  height=99999,
109
  interactive=False,
110
  headers=structure_design_csv.columns.to_list(),
111
+ datatype=['number', 'markdown'] + (len(structure_design_csv.columns)-1) * ['number'],
112
  )
113
  with gr.TabItem("πŸ† Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
114
  with gr.Row():
115
+ sequence_design_csv = assign_rank_and_get_sorted_csv('data_link/sequence_design.csv', 'data_rank/sequence_design.csv', ignore_num=1)
116
  sequence_design_table = gr.components.DataFrame(
117
  value=convert_to_float(sequence_design_csv).values,
118
  height=99999,
119
  interactive=False,
120
  headers=sequence_design_csv.columns.to_list(),
121
+ datatype=['number', 'markdown'] + (len(sequence_design_csv.columns)-1) * ['number'],
122
  )
123
  with gr.TabItem("πŸ† Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
124
  with gr.Row():
125
+ co_design_csv = assign_rank_and_get_sorted_csv('data_link/co_design.csv', 'data_rank/co_design.csv', ignore_num=1)
126
  co_design_table = gr.components.DataFrame(
127
  value=convert_to_float(co_design_csv).values,
128
  height=99999,
129
  interactive=False,
130
  headers=co_design_csv.columns.to_list(),
131
+ datatype=['number', 'markdown'] + (len(co_design_csv.columns)-1) * ['number'],
132
  )
133
  with gr.TabItem("οΏ½οΏ½οΏ½οΏ½ Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
134
  with gr.Row():
135
+ motif_scaffolding_csv = assign_rank_and_get_sorted_csv('data_link/motif_scaffolding.csv', 'data_rank/motif_scaffolding.csv')
136
  motif_scaffolding_table = gr.components.DataFrame(
137
  value=convert_to_float(motif_scaffolding_csv).values,
138
  height=99999,
139
  interactive=False,
140
  headers=motif_scaffolding_csv.columns.to_list(),
141
+ datatype=['number', 'markdown'] + (len(motif_scaffolding_csv.columns)-1) * ['number'],
142
  )
143
  with gr.TabItem("πŸ† Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
144
  with gr.Row():
145
+ antibody_design_csv = assign_rank_and_get_sorted_csv('data_link/antibody_design.csv', 'data_rank/antibody_design.csv', ignore_num=1)
146
  antibody_design_table = gr.components.DataFrame(
147
  value=convert_to_float(antibody_design_csv).values,
148
  height=99999,
149
  interactive=False,
150
  headers=antibody_design_csv.columns.to_list(),
151
+ datatype=['number', 'markdown'] + (len(antibody_design_csv.columns)-1) * ['number'],
152
  )
153
  with gr.TabItem("πŸ… Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
154
  with gr.Row():
155
+ protein_folding_csv = assign_rank_and_get_sorted_csv('data_link/protein_folding.csv', 'data_rank/protein_folding.csv')
156
  protein_folding_table = gr.components.DataFrame(
157
  value=convert_to_float(protein_folding_csv).values,
158
  height=99999,
159
  interactive=False,
160
  headers=protein_folding_csv.columns.to_list(),
161
+ datatype=['number', 'markdown'] + (len(protein_folding_csv.columns)-1) * ['number'],
162
  )
163
  with gr.TabItem("πŸ… Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
164
  with gr.Row():
165
+ multi_state_prediction_csv = assign_rank_and_get_sorted_csv('data_link/multi_state_prediction.csv', 'data_rank/multi_state_prediction.csv')
166
  multi_state_prediction_table = gr.components.DataFrame(
167
  value=convert_to_float(multi_state_prediction_csv).values,
168
  height=99999,
169
  interactive=False,
170
  headers=multi_state_prediction_csv.columns.to_list(),
171
+ datatype=['number', 'markdown'] + (len(multi_state_prediction_csv.columns)-1) * ['number'],
172
  )
173
  with gr.TabItem("πŸ… Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
174
  with gr.Row():
175
+ conformation_prediction_csv = assign_rank_and_get_sorted_csv('data_link/conformation_prediction.csv', 'data_rank/conformation_prediction.csv')
176
  conformation_prediction_table = gr.components.DataFrame(
177
  value=convert_to_float(conformation_prediction_csv).values,
178
  height=99999,
179
  interactive=False,
180
  headers=conformation_prediction_csv.columns.to_list(),
181
+ datatype=['number', 'markdown'] + (len(conformation_prediction_csv.columns)-1) * ['number'],
182
  )
183
 
184
 
data_link/{antibody_design_wLink.csv β†’ antibody_design.csv} RENAMED
File without changes
data_link/co_design.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Model,scTM (L=100) ↑,scRMSD (L=100) ↓,Max Clust. (L=100) ↑,Max TM (L=100) ↓,scTM (L=200) ↑,scRMSD (L=200) ↓,Max Clust. (L=200) ↑,Max TM (L=200) ↓,scTM (L=300) ↑,scRMSD (L=300) ↓,Max Clust. (L=300) ↑,Max TM (L=300) ↓,scTM (L=500) ↑,scRMSD (L=500) ↓,Max Clust. (L=500) ↑,Max TM (L=500) ↓
2
+ <a href="https://www.rcsb.org/"> Native PDBs </a>,0.91,2.98,0.75,NaN,0.88,3.24,0.77,NaN,0.92,3.94,0.75,NaN,0.9,9.64,0.8,NaN
3
+ <a href="https://github.com/RosettaCommons/protein_generator"> ProteinGenerator </a>,0.91,3.75,0.24,0.73,0.88,6.24,0.25,0.72,0.81,9.26,0.22,0.71,0.41,33.91,0.18,0.73
4
+ <a href="https://github.com/ProteinDesignLab/protpardelle"> ProtPardelle* </a>,0.56,12.9,0.57,0.66,0.64,13.67,0.1,0.69,0.69,14.91,0.04,0.72,0.4,41.23,0.6,0.69
5
+ <a href="https://github.com/jasonkyuyim/multiflow"> Multiflow </a>,0.96,1.1,0.33,0.71,0.95,1.61,0.42,0.71,0.96,2.14,0.58,0.71,0.83,8.48,0.67,0.68
6
+ <a href="https://github.com/evolutionaryscale/esm"> ESM3 (1.4B)* </a>,0.72,13.8,0.64,0.41,0.63,21.18,0.63,0.61,0.59,25.5,0.52,0.73,0.54,33.7,0.37,0.77
data_link/conformation_prediction.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Pairwise RMSD,*RMSF,Pearson r on Pairwise RMSD ↑,Pearson r on *Global RMSF ↑,Pearson r on *Per target RMSF ↑,*RMWD ↓,MD PCA W2 ↓,Joint PCA W2 ↓,PC sim > 0.5% ↑,Weak contacts J ↑,Transient contacts J ↑,*Exposed residue J ↑,*Exposed MI matrix ρ ↑,CA break % ↓,CA clash % ↓,PepBond break % ↓
2
+ MD iid,2.76,1.63,0.96,0.97,0.99,0.71,0.76,0.7,93.9,0.9,0.8,0.93,0.56,0,0.1,3.4
3
+ MD 2.5 ns,1.54,0.98,0.89,0.85,0.85,2.21,1.57,1.93,36.6,0.62,0.45,0.64,0.24,0,0.1,3.4
4
+ <a href="https://github.com/bjing2016/EigenFold"> EigenFold </a>,5.96,NaN,-0.04,NaN,NaN,NaN,2.35,7.96,12.2,0.36,0.18,NaN,NaN,0.7,9.6,NaN
5
+ <a href="https://www.nature.com/articles/s41586-023-06832-9"> MSA-depth256</a>,0.84,0.53,0.25,0.34,0.59,3.63,1.83,2.9,29.3,0.3,0.28,0.33,0.06,0,0.2,5.9
6
+ <a href="https://www.nature.com/articles/s41586-023-06832-9"> MSA-depth64</a>,2.03,1.51,0.24,0.3,0.57,4,1.87,3.32,18.3,0.38,0.27,0.38,0.12,0,0.2,8.4
7
+ <a href="https://www.nature.com/articles/s41586-023-06832-9"> MSA-depth32</a>,5.71,7.96,0.07,0.17,0.53,6.12,2.5,5.67,17.1,0.39,0.24,0.36,0.15,0,0.5,13
8
+ <a href="https://github.com/lujiarui/Str2Str">Str2Str-ODE (t=0.1)</a>,1.66,NaN,0.13,NaN,NaN,NaN,2.12,4.42,6.1,0.42,0.17,NaN,NaN,0,0.1,13.7
9
+ <a href="https://github.com/lujiarui/Str2Str">Str2Str-ODE (t=0.3)</a>,3.15,NaN,0.12,NaN,NaN,NaN,2.23,4.75,9.8,0.41,0.17,NaN,NaN,0,0.1,14.8
10
+ <a href="https://github.com/lujiarui/Str2Str">Str2Str-SDE (t=0.1)</a>,4.74,NaN,0.1,NaN,NaN,NaN,2.54,8.84,9.8,0.4,0.13,NaN,NaN,1.6,0.2,23
11
+ <a href="https://github.com/lujiarui/Str2Str">Str2Str-SDE (t=0.3)</a>,7.54,NaN,0,NaN,NaN,NaN,3.29,12.28,7.3,0.35,0.13,NaN,NaN,1.5,0.2,21.4
12
+ <a href="https://github.com/bjing2016/alphaflow">AlphaFlow-PDB</a>,2.58,1.2,0.27,0.46,0.81,2.96,1.66,2.6,37.8,0.44,0.33,0.42,0.18,0,0.2,6.6
13
+ <a href="https://github.com/bjing2016/alphaflow">AlphaFlow-MD</a>,2.88,1.63,0.53,0.66,0.85,2.68,1.53,2.28,39,0.57,0.38,0.5,0.24,0,0.2,21.7
14
+ <a href="https://github.com/bjing2016/alphaflow">ESMFlow-PDB</a>,3,1.68,0.14,0.27,0.71,4.2,1.77,3.54,28,0.42,0.29,0.41,0.16,0,0.6,5.4
15
+ <a href="https://github.com/bjing2016/alphaflow">ESMFlow-MD</a>,3.34,2.13,0.19,0.3,0.76,3.63,1.54,3.15,25.6,0.51,0.33,0.47,0.21,0,0.3,10.9
16
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-Open-ClsFree</a>,3.68,2.12,0.4,0.54,0.83,2.92,1.5,2.54,46.3,0.54,0.33,0.47,0.21,0,1.2,5.7
17
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-Open-PDB</a>,2.9,1.43,0.38,0.51,0.82,2.97,1.57,2.51,34.1,0.47,0.34,0.43,0.18,0,0.9,5.7
18
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-Open-MD</a>,3.43,2.21,0.59,0.67,0.85,2.76,1.44,2.25,35.4,0.59,0.36,0.5,0.24,0,0.8,6.3
19
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-ESM-ClsFree</a>,4.04,2.84,0.31,0.43,0.82,3.82,1.72,3.06,37.8,0.54,0.31,0.47,0.18,0,1.8,4.3
20
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-ESM-PDB</a>,3.42,2.06,0.29,0.4,0.8,3.67,1.7,3.17,34.1,0.48,0.31,0.42,0.18,0,1.6,3.9
21
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-ESM-MD</a>,3.91,2.79,0.35,0.48,0.82,3.67,1.66,2.89,39,0.56,0.34,0.48,0.23,0,1.5,4
data_link/inverse_folding.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Model,CASP AAR ↑,CAMEO AAR ↑,scTM (L=100) ↑,pLDDT (L=100) ↑,scTM (L=200) ↑,pLDDT (L=200) ↑,scTM (L=300) ↑,pLDDT (L=300) ↑,scTM (L=400) ↑,pLDDT (L=400) ↑,scTM (L=500) ↑,pLDDT (L=500) ↑
2
+ <a href="https://github.com/dauparas/ProteinMPNN">ProteinMPNN</a>,0.45,0.468,0.962,94.14,0.945,89.34,0.962,90.28,0.875,83.76,0.568,67.09
3
+ <a href="https://github.com/facebookresearch/esm">ESM-IF1</a>,NaN,NaN,0.81,88.83,0.635,69.67,0.336,74.36,0.449,64.59,0.462,58.97
4
+ <a href="https://github.com/BytedProtein/ByProt">LM-Design</a>,0.516,0.57,0.834,78.45,0.373,58.41,0.481,69.86,0.565,59.87,0.397,56.35
5
+ <a href="https://github.com/evolutionaryscale/esm">ESM3</a>,NaN,NaN,0.942,86.6,0.486,60.69,0.632,70.78,0.564,62.63,0.452,59.37
data_link/motif_scaffolding.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ Model,1QJG,2KL8,4JHW,4ZYP,5IUS,5TPN,5TRV,5WN9,6EXZ,7MRX,3IXT,1BCF,1PRW,1YCR,5YUI,6E6R
2
+ <a href="https://github.com/microsoft/protein-frame-flow"> FrameFlow </a>,15,100,10,30,80,60,25,5,55,17,20,70,10,10,5,46
3
+ <a href="https://github.com/RosettaCommons/RFdiffusion"> RFdiffusion </a>,17,90,13,40,65,50,37,4,57,16,30,80,12,20,8,63
4
+ <a href="https://github.com/blt2114/twisted_diffusion_sampler"> TDS </a>,25,60,15,20,85,35,34,9,42,22,25,30,15,15,20,25
5
+ <a href="https://github.com/microsoft/evodiff">EvoDiff</a>,0,0,0,0,0,0,0,0,0,0,9,38,36,3,5,3
6
+ <a href="https://github.com/bytedance/dplm">DPLM</a>,0,1,0,1,0,0,0,0,1,0,37,100,81,48,94,79
7
+ <a href="https://github.com/evolutionaryscale/esm"> ESM3 (1.4B)* </a>,19,5,0,1,2,7,13,0,56,50,28,100,91,77,89,54
data_link/multi_state_prediction.csv ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,RMSDens N=10,RMSDens N=100,RMSDens N=500,RMSDens N=1000,RMSD Cluster 3 N=10,RMSD Cluster 3 N=100,RMSD Cluster 3 N=500,RMSD Cluster 3 N=1000,Pairwise RMSD,CA clash (%),CA break (%),PepBond break (%)
2
+ <a href="https://github.com/bjing2016/EigenFold"> EigenFold </a>,1.56,1.5,1.47,1.46,2.54,2.48,2.46,2.46,0.85,1.4,4.3,NaN
3
+ <a href="https://www.nature.com/articles/s41586-023-06832-9"> MSA-depth256</a>,1.57,1.54,1.52,1.52,2.51,2.47,2.45,2.45,0.2,0,0,9.2
4
+ <a href="https://www.nature.com/articles/s41586-023-06832-9"> MSA-depth64</a>,1.6,1.54,1.51,1.5,2.48,2.4,2.35,2.33,0.55,0,0,7.9
5
+ <a href="https://www.nature.com/articles/s41586-023-06832-9"> MSA-depth32</a>,1.67,1.53,1.45,1.41,2.39,2.21,1.93,1.87,2.14,0.6,0,10.6
6
+ <a href="https://github.com/lujiarui/Str2Str">Str2Str-ODE (Tmax=0.15)</a>,2.36,2.19,2.1,2.08,3.03,2.68,2.6,2.56,1.86,0,0,13.9
7
+ <a href="https://github.com/lujiarui/Str2Str">Str2Str-SDE (Tmax=0.15)</a>,2.83,2.48,2.28,2.25,3.42,2.92,2.52,2.48,3.6,0.3,0,16
8
+ <a href="https://github.com/bjing2016/alphaflow">AlphaFlow-PDB</a>,1.53,1.45,1.42,1.41,2.48,2.43,2.41,2.4,0.86,0,0,13.2
9
+ <a href="https://github.com/bjing2016/alphaflow">AlphaFlow-MD</a>,1.74,1.51,1.45,1.43,2.44,2.32,2.28,2.24,1.26,0,0.1,26.2
10
+ <a href="https://github.com/bjing2016/alphaflow">ESMFlow-PDB</a>,1.61,1.49,1.44,1.42,2.47,2.41,2.37,2.35,0.74,0,0,6
11
+ <a href="https://github.com/bjing2016/alphaflow">ESMFlow-MD</a>,1.66,1.5,1.41,1.4,2.49,2.29,2.2,2.18,1.17,0,0,14.3
12
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-Open-ClsFree</a>,1.65,1.48,1.41,1.37,2.56,2.3,2.16,2.03,1.77,0.5,0,5.5
13
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-Open-MD</a>,1.64,1.5,1.44,1.42,2.49,2.39,2.32,2.31,1.37,0.2,0,4.6
14
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-ESM-ClsFree</a>,1.58,1.45,1.41,1.39,2.5,2.39,2.35,2.33,1.52,0.5,0,7.5
15
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-ESM-MD</a>,1.61,1.47,1.42,1.4,2.45,2.32,2.26,2.24,1.42,0.1,0,5
16
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-ESM-Energy</a>,1.63,1.47,1.43,1.42,2.55,2.43,2.41,2.4,1.26,0.1,0,7.5
17
+ <a href="https://github.com/bytedance/ConfDiff">ConfDiff-ESM-Force</a>,1.58,1.44,1.37,1.36,2.45,2.33,2.23,2.22,1.76,0.1,0,8.9
data_link/protein_folding.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Model,TM-score ↑,RMSD ↓,GDT-TS ↑,lDDT ↑,CA clash (%) ↓,CA break (%) ↓,PepBond break (%) ↓
2
+ <a href="https://github.com/google-deepmind/alphafold"> AlphaFold2 </a>,0.871,3.21,0.86,0.9,0.3,0,4.8
3
+ <a href="https://github.com/aqlaboratory/openfold/"> OpenFold </a>,0.87,3.21,0.856,0.895,0.4,0,2
4
+ <a href="https://github.com/uw-ipd/RoseTTAFold2"> RoseTTAFold2 </a>,0.859,3.52,0.845,0.888,0.3,0.2,5.5
5
+ <a href="https://github.com/facebookresearch/esm"> ESMFold </a>,0.847,3.98,0.826,0.87,0.3,0,4.7
6
+ <a href="https://github.com/bjing2016/EigenFold"> EigenFold* </a>,0.743,7.65,0.703,0.737,8,0.5,NaN
data_link/sequence_design.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Model,ppl (L=100) ↓,pLDDT (L=100) ↑,pairwise TM (L=100) ↓,Max Clust. (L=100) ↑,Max TM (L=100) ↓,ppl (L=200) ↓,pLDDT (L=200) ↑,pairwise TM (L=200) ↓,Max Clust. (L=200) ↑,Max TM (L=200) ↓,ppl (L=300) ↓,pLDDT (L=300) ↑,pairwise TM (L=300) ↓,Max Clust. (L=300) ↑,Max TM (L=300) ↓,ppl (L=500) ↓,pLDDT (L=500) ↑,pairwise TM (L=500) ↓,Max Clust. (L=500) ↑,Max TM (L=500) ↓
2
+ Native Seqs,NaN,68.46,0.55,0.75,NaN,NaN,61.91,0.49,0.78,NaN,NaN,61.49,0.51,0.85,NaN,NaN,62.95,0.51,0.78,NaN
3
+ <a href="https://github.com/enijkamp/progen2">Progen 2 (700M)</a>,8.28,64,0.42,0.94,0.64,5.68,69.91,0.4,0.91,0.69,6.25,65.69,0.42,0.93,0.66,4.27,61.45,0.32,0.95,0.68
4
+ <a href="https://github.com/microsoft/evodiff">EvoDiff</a>,16.89,50.2,0.43,0.98,0.69,17.28,50.66,0.36,1,0.71,17.13,45.14,0.31,1,0.68,16.51,43.14,0.31,1,0.69
5
+ <a href="https://github.com/bytedance/dplm">DPLM (650M)</a>,6.21,85.38,0.5,0.8,0.74,4.61,93.54,0.54,0.7,0.91,3.47,93.07,0.57,0.63,0.91,3.33,87.73,0.43,0.85,0.85
6
+ <a href="https://github.com/evolutionaryscale/esm">ESM3 (1.4B)</a>,14.79,54.26,0.45,0.9,0.68,12.96,58.45,0.35,1,0.8,14.59,48.08,0.32,1,0.75,11.1,52.17,0.3,1,0.54
data_link/structure_design.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,scTM (L=50) ↑,scRMSD (L=50) ↓,Max TM (L=50) ↓,pairwise TM (L=50) ↓,Max Clust. (L=50) ↑,scTM (L=100) ↑,scRMSD (L=100) ↓,Max TM (L=100) ↓,pairwise TM (L=100) ↓,Max Clust. (L=100) ↑,scTM (L=300) ↑,scRMSD (L=300) ↓,Max TM (L=300) ↓,pairwise TM (L=300) ↓,Max Clust. (L=300) ↑,scTM (L=500) ↑,scRMSD (L=500) ↓,Max TM (L=500) ↓,pairwise TM (L=500) ↓,Max Clust. (L=500) ↑
2
+ Native PDBs,0.91,0.74,NaN,0.29,0.66,0.96,0.67,NaN,0.3,0.77,0.97,0.82,NaN,0.28,0.77,0.97,1.07,NaN,0.29,0.8
3
+ <a href="https://github.com/RosettaCommons/RFdiffusion">RFdiffusion</a>,0.95,0.45,0.65,0.58,0.67,0.98,0.48,0.76,0.41,0.32,0.96,1.03,0.64,0.36,0.65,0.79,5.6,0.62,0.33,0.89
4
+ <a href="https://github.com/microsoft/protein-frame-flow">FrameFlow</a>,0.91,0.58,0.75,0.68,0.39,0.94,0.7,0.72,0.55,0.49,0.92,1.95,0.65,0.43,0.88,0.61,7.92,0.61,0.4,0.92
5
+ <a href="https://github.com/generatebio/chroma">Chroma</a>,0.85,1.05,0.59,0.29,0.48,0.89,1.27,0.7,0.35,0.59,0.87,2.47,0.66,0.36,0.67,0.72,6.71,0.6,0.29,0.99
6
+ <a href="https://github.com/jasonkyuyim/se3_diffusion">FrameDiff(latest)</a>,0.85,1,0.67,0.35,0.64,0.9,1.23,0.71,0.52,0.11,0.87,2.73,0.69,0.48,0.21,0.63,9.52,0.58,0.4,0.52
7
+ <a href="https://github.com/DreamFold/FoldFlow">FoldFlow1(sfm)</a>,0.9,0.67,0.68,0.63,0.48,0.87,1.34,0.65,0.49,0.83,0.45,9.04,0.54,0.39,1,0.37,13.04,0.53,0.37,1
8
+ <a href="https://github.com/DreamFold/FoldFlow">FoldFlow1(base)</a>,0.79,1.19,0.66,0.53,0.76,0.81,1.7,0.62,0.48,0.83,0.43,9.56,0.54,0.39,0.98,0.35,13.2,0.52,0.39,1
9
+ <a href="https://github.com/DreamFold/FoldFlow">FoldFlow1(ot)</a>,0.83,1.1,0.65,0.53,0.77,0.83,1.6,0.64,0.48,0.81,0.54,8.21,0.58,0.41,0.94,0.37,12.48,0.51,0.35,1
10
+ <a href="https://github.com/aqlaboratory/genie2">Genie</a>,0.57,3.12,0.57,0.32,0.9,0.69,3.38,0.59,0.31,0.96,0.27,20.37,0.3,0.23,1,0.25,26.08,0.22,0.23,1
data_rank/antibody_design.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ο»ΏModel,AAR ↑,RMSD ↓,TM-score ↑,Binding Energy ↓,SeqSim-outer ↓,SeqSim-inner ↑,PHR (%) ↓,CN-score ↑,Clashes-inner ↓,Clashes-outer ↓,SeqNat ↑,Total Energy ↓,scRMSD ↓
2
+ 0,-1,1,-1,1,1,0,1,-1,1,1,-1,1,1
data_rank/antibody_design_RankTerms.csv DELETED
@@ -1,2 +0,0 @@
1
- ο»ΏAAR ↑,RMSD ↓,TM-score ↑,Binding Energy ↓,SeqSim-outer ↓,SeqSim-inner ↑,PHR (%) ↓,CN-score ↑,Clashes-inner ↓,Clashes-outer ↓,SeqNat ↑,Total Energy ↓,scRMSD ↓
2
- -1,1,-1,1,1,0,1,-1,1,1,-1,1,1
 
 
 
data_rank/co_design.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,scTM (L=100) ↑,scRMSD (L=100) ↓,Max Clust. (L=100) ↑,Max TM (L=100) ↓,scTM (L=200) ↑,scRMSD (L=200) ↓,Max Clust. (L=200) ↑,Max TM (L=200) ↓,scTM (L=300) ↑,scRMSD (L=300) ↓,Max Clust. (L=300) ↑,Max TM (L=300) ↓,scTM (L=500) ↑,scRMSD (L=500) ↓,Max Clust. (L=500) ↑,Max TM (L=500) ↓
2
+ 0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1
data_rank/conformation_prediction.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,Pairwise RMSD,*RMSF,Pearson r on Pairwise RMSD ↑,Pearson r on *Global RMSF ↑,Pearson r on *Per target RMSF ↑,*RMWD ↓,MD PCA W2 ↓,Joint PCA W2 ↓,PC sim > 0.5% ↑,Weak contacts J ↑,Transient contacts J ↑,*Exposed residue J ↑,*Exposed MI matrix ρ ↑,CA break % ↓,CA clash % ↓,PepBond break % ↓
2
+ 0,-1,0,0,0,-1,1,1,1,0,0,0,0,0,0,0,0
data_rank/inverse_folding.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,CASP AAR ↑,CAMEO AAR ↑,scTM (L=100) ↑,pLDDT (L=100) ↑,scTM (L=200) ↑,pLDDT (L=200) ↑,scTM (L=300) ↑,pLDDT (L=300) ↑,scTM (L=400) ↑,pLDDT (L=400) ↑,scTM (L=500) ↑,pLDDT (L=500) ↑
2
+ 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
data_rank/motif_scaffolding.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,1QJG,2KL8,4JHW,4ZYP,5IUS,5TPN,5TRV,5WN9,6EXZ,7MRX,3IXT,1BCF,1PRW,1YCR,5YUI,6E6R
2
+ 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
data_rank/multi_state_prediction.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,RMSDens N=10,RMSDens N=100,RMSDens N=500,RMSDens N=1000,RMSD Cluster 3 N=10,RMSD Cluster 3 N=100,RMSD Cluster 3 N=500,RMSD Cluster 3 N=1000,Pairwise RMSD,CA clash (%),CA break (%),PepBond break (%)
2
+ 0,0,0,0,1,0,0,0,1,-1,0,0,0
data_rank/protein_folding.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,TM-score ↑,RMSD ↓,GDT-TS ↑,lDDT ↑,CA clash (%) ↓,CA break (%) ↓,PepBond break (%) ↓
2
+ 0,-1,1,-1,-1,0,0,0
data_rank/sequence_design.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,ppl (L=100) ↓,pLDDT (L=100) ↑,pairwise TM (L=100) ↓,Max Clust. (L=100) ↑,Max TM (L=100) ↓,ppl (L=200) ↓,pLDDT (L=200) ↑,pairwise TM (L=200) ↓,Max Clust. (L=200) ↑,Max TM (L=200) ↓,ppl (L=300) ↓,pLDDT (L=300) ↑,pairwise TM (L=300) ↓,Max Clust. (L=300) ↑,Max TM (L=300) ↓,ppl (L=500) ↓,pLDDT (L=500) ↑,pairwise TM (L=500) ↓,Max Clust. (L=500) ↑,Max TM (L=500) ↓
2
+ 0,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1
data_rank/structure_design.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Model,scTM (L=50) ↑,scRMSD (L=50) ↓,Max TM (L=50) ↓,pairwise TM (L=50) ↓,Max Clust. (L=50) ↑,scTM (L=100) ↑,scRMSD (L=100) ↓,Max TM (L=100) ↓,pairwise TM (L=100) ↓,Max Clust. (L=100) ↑,scTM (L=300) ↑,scRMSD (L=300) ↓,Max TM (L=300) ↓,pairwise TM (L=300) ↓,Max Clust. (L=300) ↑,scTM (L=500) ↑,scRMSD (L=500) ↓,Max TM (L=500) ↓,pairwise TM (L=500) ↓,Max Clust. (L=500) ↑
2
+ 0,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,-1