File size: 5,003 Bytes
f93a294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463eb87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93a294
463eb87
 
 
 
 
 
81d3e7f
463eb87
f93a294
81d3e7f
f93a294
 
 
 
 
81d3e7f
f93a294
 
 
 
 
463eb87
 
f93a294
463eb87
81d3e7f
f93a294
 
463eb87
 
 
 
 
 
 
 
766a1a8
463eb87
 
 
 
 
 
f93a294
81d3e7f
f93a294
 
 
 
 
463eb87
f93a294
 
463eb87
f93a294
 
 
 
 
 
 
 
 
81d3e7f
f93a294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13608bf
f93a294
 
eec4598
f93a294
463eb87
f93a294
 
 
 
 
 
 
 
 
 
 
 
463eb87
f313675
463eb87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os

from gradio_webrtc import WebRTC
import requests
from PIL import Image

import matplotlib.pyplot as plt

from random import choice
import io

import gradio as gr

import cv2
import numpy as np

from io import BytesIO
import random
import tempfile
from pathlib import Path

import torch
from transformers import pipeline

from PIL import Image

import matplotlib.patches as patches


detector50 = pipeline(model="facebook/detr-resnet-50")

detector101 = pipeline(model="facebook/detr-resnet-101")



COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
            "#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
            "#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]

fdic = {
#    "family" : "Impact",
    "style" : "italic",
    "size" : 15,
    "color" : "yellow",
    "weight" : "bold"
}

#######################################


def query_data(model, in_pil_img: Image.Image):
    results = None
    if model == "detr-resnet-101":
        results = detector101(in_pil_img)
    else:
        results = detector50(in_pil_img)
    print(f"检测结果:{results}")
    return results



def get_figure(in_pil_img):
    plt.figure(figsize=(16, 10))
    plt.imshow(in_pil_img)
    
    ax = plt.gca()
    print(f"图像尺寸:{in_pil_img.size}")
    in_results = query_data(in_pil_img)

    for prediction in in_results:
        selected_color = choice(COLORS)

        x, y = prediction['box']['xmin'], prediction['box']['ymin'],
        w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']

        ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
        ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
        print(f"x: {x}, y: {y}, w: {w}, h: {h}, label: {prediction['label']}, score: {prediction['score']}")

    plt.axis("off")

    return plt.gcf()


def process_single_frame(frame):
    print(f"开始处理单帧")
    # 将 BGR 转换为 RGB
    rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    
    # 创建 PIL 图像对象
    pil_image = Image.fromarray(rgb_frame)

    # 获取带有标注信息的图像
    figure = get_figure(pil_image)

    buf = BytesIO()
    figure.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    buf.seek(0)
    annotated_image = Image.open(buf).convert('RGB')

    return np.array(annotated_image)


def infer_video(input_video_path):
    print(f"开始处理视频 {input_video_path}")
    with tempfile.TemporaryDirectory() as tmp_dir:
        # output_video_path = Path(tmp_dir) / "output.mp4"
        cap = cv2.VideoCapture(input_video_path)

        if not cap.isOpened():
            raise ValueError("无法打开输入视频文件")

        # width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        # height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        # fps = cap.get(cv2.CAP_PROP_FPS)
        # fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))  # 使用原始视频的编码器
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))  # 获取总帧数

        # out = cv2.VideoWriter(str(output_video_path), fourcc, fps, (width, height))

        frame_count = 0
        try:
            while frame_count < total_frames:
                ret, frame = cap.read()
                if not ret:
                    print(f"提前结束:在第 {frame_count} 帧时无法读取帧")
                    break
                
                frame_count += 1

                # 处理单帧并转换为 OpenCV 格式(BGR)
                processed_frame = process_single_frame(frame)
                bgr_frame = cv2.cvtColor(processed_frame, cv2.COLOR_RGB2BGR)

                yield bgr_frame

                # 可选:显示进度
                if frame_count % 30 == 0:
                    print(f"已处理 {frame_count}/{total_frames} 帧")

                # if frame_count == 48:
                #     print("测试结束")
                #     return None

        finally:
            cap.release()
        
        return None

    
# 更新 Gradio 接口以支持视频输入和输出
with gr.Blocks(title="基于AI的安全风险识别及防控应用",
               css=".gradio-container {background:lightyellow;}"
              ) as demo:
    gr.HTML("<div style='font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;'>基于AI的安全风险识别及防控应用</div>")
    
    with gr.Row():
        input_video = gr.Video(label="输入视频")
        output_video = WebRTC(label="WebRTC Stream",
                                   rtc_configuration=None,
                                   mode="receive",
                                   modality="video")
        detect = gr.Button("Detect", variant="primary")
    output_video.stream(
        fn=infer_video,
        inputs=[input_video],
        outputs=[output_video],
        trigger=detect.click
    )

demo.launch()