Spaces:
Runtime error
Runtime error
Upload app.py
#7
by
John6666
- opened
app.py
CHANGED
@@ -1,369 +1,373 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
from gradio_imageslider import ImageSlider
|
4 |
-
import torch
|
5 |
-
|
6 |
-
torch.jit.script = lambda f: f
|
7 |
-
from hidiffusion import apply_hidiffusion
|
8 |
-
from diffusers import (
|
9 |
-
ControlNetModel,
|
10 |
-
StableDiffusionXLControlNetImg2ImgPipeline,
|
11 |
-
DDIMScheduler,
|
12 |
-
)
|
13 |
-
from controlnet_aux import AnylineDetector
|
14 |
-
from compel import Compel, ReturnedEmbeddingsType
|
15 |
-
from PIL import Image
|
16 |
-
import os
|
17 |
-
import time
|
18 |
-
import numpy as np
|
19 |
-
|
20 |
-
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
21 |
-
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
22 |
-
|
23 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
-
dtype = torch.float16
|
25 |
-
|
26 |
-
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
27 |
-
|
28 |
-
print(f"device: {device}")
|
29 |
-
print(f"dtype: {dtype}")
|
30 |
-
print(f"low memory: {LOW_MEMORY}")
|
31 |
-
|
32 |
-
|
33 |
-
model = "stabilityai/stable-diffusion-xl-base-1.0"
|
34 |
-
# model = "stabilityai/sdxl-turbo"
|
35 |
-
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
|
36 |
-
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
|
37 |
-
# controlnet = ControlNetModel.from_pretrained(
|
38 |
-
# "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
39 |
-
# )
|
40 |
-
controlnet = ControlNetModel.from_pretrained(
|
41 |
-
"TheMistoAI/MistoLine",
|
42 |
-
torch_dtype=torch.float16,
|
43 |
-
revision="refs/pr/3",
|
44 |
-
variant="fp16",
|
45 |
-
)
|
46 |
-
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
47 |
-
model,
|
48 |
-
controlnet=controlnet,
|
49 |
-
torch_dtype=dtype,
|
50 |
-
variant="fp16",
|
51 |
-
use_safetensors=True,
|
52 |
-
scheduler=scheduler,
|
53 |
-
)
|
54 |
-
|
55 |
-
compel = Compel(
|
56 |
-
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
57 |
-
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
58 |
-
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
59 |
-
requires_pooled=[False, True],
|
60 |
-
)
|
61 |
-
pipe = pipe.to(device)
|
62 |
-
|
63 |
-
if not IS_SPACES_ZERO:
|
64 |
-
apply_hidiffusion(pipe)
|
65 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
66 |
-
pipe.enable_model_cpu_offload()
|
67 |
-
pipe.enable_vae_tiling()
|
68 |
-
|
69 |
-
anyline = AnylineDetector.from_pretrained(
|
70 |
-
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
|
71 |
-
).to(device)
|
72 |
-
|
73 |
-
|
74 |
-
def pad_image(image):
|
75 |
-
w, h = image.size
|
76 |
-
if w == h:
|
77 |
-
return image
|
78 |
-
elif w > h:
|
79 |
-
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
|
80 |
-
pad_w = 0
|
81 |
-
pad_h = (w - h) // 2
|
82 |
-
new_image.paste(image, (0, pad_h))
|
83 |
-
return new_image
|
84 |
-
else:
|
85 |
-
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
|
86 |
-
pad_w = (h - w) // 2
|
87 |
-
pad_h = 0
|
88 |
-
new_image.paste(image, (pad_w, 0))
|
89 |
-
return new_image
|
90 |
-
|
91 |
-
|
92 |
-
@spaces.GPU(duration=120)
|
93 |
-
def predict(
|
94 |
-
input_image,
|
95 |
-
prompt,
|
96 |
-
negative_prompt,
|
97 |
-
seed,
|
98 |
-
guidance_scale=8.5,
|
99 |
-
scale=2,
|
100 |
-
controlnet_conditioning_scale=0.5,
|
101 |
-
strength=1.0,
|
102 |
-
controlnet_start=0.0,
|
103 |
-
controlnet_end=1.0,
|
104 |
-
guassian_sigma=2.0,
|
105 |
-
intensity_threshold=3,
|
106 |
-
progress=gr.Progress(track_tqdm=True),
|
107 |
-
):
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
)
|
178 |
-
|
179 |
-
label="
|
180 |
-
|
181 |
-
)
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
inputs=inputs,
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from gradio_imageslider import ImageSlider
|
4 |
+
import torch
|
5 |
+
|
6 |
+
torch.jit.script = lambda f: f
|
7 |
+
from hidiffusion import apply_hidiffusion
|
8 |
+
from diffusers import (
|
9 |
+
ControlNetModel,
|
10 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
11 |
+
DDIMScheduler,
|
12 |
+
)
|
13 |
+
from controlnet_aux import AnylineDetector
|
14 |
+
from compel import Compel, ReturnedEmbeddingsType
|
15 |
+
from PIL import Image
|
16 |
+
import os
|
17 |
+
import time
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
21 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
22 |
+
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
dtype = torch.float16
|
25 |
+
|
26 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
27 |
+
|
28 |
+
print(f"device: {device}")
|
29 |
+
print(f"dtype: {dtype}")
|
30 |
+
print(f"low memory: {LOW_MEMORY}")
|
31 |
+
|
32 |
+
|
33 |
+
model = "stabilityai/stable-diffusion-xl-base-1.0"
|
34 |
+
# model = "stabilityai/sdxl-turbo"
|
35 |
+
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
|
36 |
+
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
|
37 |
+
# controlnet = ControlNetModel.from_pretrained(
|
38 |
+
# "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
39 |
+
# )
|
40 |
+
controlnet = ControlNetModel.from_pretrained(
|
41 |
+
"TheMistoAI/MistoLine",
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
revision="refs/pr/3",
|
44 |
+
variant="fp16",
|
45 |
+
)
|
46 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
47 |
+
model,
|
48 |
+
controlnet=controlnet,
|
49 |
+
torch_dtype=dtype,
|
50 |
+
variant="fp16",
|
51 |
+
use_safetensors=True,
|
52 |
+
scheduler=scheduler,
|
53 |
+
)
|
54 |
+
|
55 |
+
compel = Compel(
|
56 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
57 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
58 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
59 |
+
requires_pooled=[False, True],
|
60 |
+
)
|
61 |
+
#pipe = pipe.to(device)
|
62 |
+
|
63 |
+
if not IS_SPACES_ZERO:
|
64 |
+
apply_hidiffusion(pipe)
|
65 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
66 |
+
pipe.enable_model_cpu_offload()
|
67 |
+
pipe.enable_vae_tiling()
|
68 |
+
|
69 |
+
anyline = AnylineDetector.from_pretrained(
|
70 |
+
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
|
71 |
+
).to("cpu") #.to(device)
|
72 |
+
|
73 |
+
|
74 |
+
def pad_image(image):
|
75 |
+
w, h = image.size
|
76 |
+
if w == h:
|
77 |
+
return image
|
78 |
+
elif w > h:
|
79 |
+
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
|
80 |
+
pad_w = 0
|
81 |
+
pad_h = (w - h) // 2
|
82 |
+
new_image.paste(image, (0, pad_h))
|
83 |
+
return new_image
|
84 |
+
else:
|
85 |
+
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
|
86 |
+
pad_w = (h - w) // 2
|
87 |
+
pad_h = 0
|
88 |
+
new_image.paste(image, (pad_w, 0))
|
89 |
+
return new_image
|
90 |
+
|
91 |
+
|
92 |
+
@spaces.GPU(duration=120)
|
93 |
+
def predict(
|
94 |
+
input_image,
|
95 |
+
prompt,
|
96 |
+
negative_prompt,
|
97 |
+
seed,
|
98 |
+
guidance_scale=8.5,
|
99 |
+
scale=2,
|
100 |
+
controlnet_conditioning_scale=0.5,
|
101 |
+
strength=1.0,
|
102 |
+
controlnet_start=0.0,
|
103 |
+
controlnet_end=1.0,
|
104 |
+
guassian_sigma=2.0,
|
105 |
+
intensity_threshold=3,
|
106 |
+
progress=gr.Progress(track_tqdm=True),
|
107 |
+
):
|
108 |
+
global pipe
|
109 |
+
global anyline
|
110 |
+
pipe = pipe.to(device)
|
111 |
+
anyline.to(device)
|
112 |
+
if IS_SPACES_ZERO:
|
113 |
+
apply_hidiffusion(pipe)
|
114 |
+
if input_image is None:
|
115 |
+
raise gr.Error("Please upload an image.")
|
116 |
+
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
|
117 |
+
conditioning, pooled = compel([prompt, negative_prompt])
|
118 |
+
generator = torch.manual_seed(seed)
|
119 |
+
last_time = time.time()
|
120 |
+
anyline_image = anyline(
|
121 |
+
padded_image,
|
122 |
+
detect_resolution=1280,
|
123 |
+
guassian_sigma=max(0.01, guassian_sigma),
|
124 |
+
intensity_threshold=intensity_threshold,
|
125 |
+
)
|
126 |
+
|
127 |
+
images = pipe(
|
128 |
+
image=padded_image,
|
129 |
+
control_image=anyline_image,
|
130 |
+
strength=strength,
|
131 |
+
prompt_embeds=conditioning[0:1],
|
132 |
+
pooled_prompt_embeds=pooled[0:1],
|
133 |
+
negative_prompt_embeds=conditioning[1:2],
|
134 |
+
negative_pooled_prompt_embeds=pooled[1:2],
|
135 |
+
width=1024 * scale,
|
136 |
+
height=1024 * scale,
|
137 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
138 |
+
controlnet_start=float(controlnet_start),
|
139 |
+
controlnet_end=float(controlnet_end),
|
140 |
+
generator=generator,
|
141 |
+
num_inference_steps=30,
|
142 |
+
guidance_scale=guidance_scale,
|
143 |
+
eta=1.0,
|
144 |
+
)
|
145 |
+
print(f"Time taken: {time.time() - last_time}")
|
146 |
+
return (padded_image, images.images[0]), padded_image, anyline_image
|
147 |
+
|
148 |
+
|
149 |
+
css = """
|
150 |
+
#intro{
|
151 |
+
# max-width: 32rem;
|
152 |
+
# text-align: center;
|
153 |
+
# margin: 0 auto;
|
154 |
+
}
|
155 |
+
"""
|
156 |
+
|
157 |
+
with gr.Blocks(css=css) as demo:
|
158 |
+
gr.Markdown(
|
159 |
+
"""
|
160 |
+
# Enhance This
|
161 |
+
### HiDiffusion SDXL
|
162 |
+
|
163 |
+
[HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation.
|
164 |
+
You can upload an initial image and prompt to generate an enhanced version.
|
165 |
+
SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine)
|
166 |
+
[Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue.
|
167 |
+
|
168 |
+
<small>
|
169 |
+
<b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
|
170 |
+
|
171 |
+
</small>
|
172 |
+
""",
|
173 |
+
elem_id="intro",
|
174 |
+
)
|
175 |
+
with gr.Row():
|
176 |
+
with gr.Column(scale=1):
|
177 |
+
image_input = gr.Image(type="pil", label="Input Image")
|
178 |
+
prompt = gr.Textbox(
|
179 |
+
label="Prompt",
|
180 |
+
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax",
|
181 |
+
)
|
182 |
+
negative_prompt = gr.Textbox(
|
183 |
+
label="Negative Prompt",
|
184 |
+
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
185 |
+
)
|
186 |
+
seed = gr.Slider(
|
187 |
+
minimum=0,
|
188 |
+
maximum=2**64 - 1,
|
189 |
+
value=1415926535897932,
|
190 |
+
step=1,
|
191 |
+
label="Seed",
|
192 |
+
randomize=True,
|
193 |
+
)
|
194 |
+
with gr.Accordion(label="Advanced", open=False):
|
195 |
+
guidance_scale = gr.Slider(
|
196 |
+
minimum=0,
|
197 |
+
maximum=50,
|
198 |
+
value=8.5,
|
199 |
+
step=0.001,
|
200 |
+
label="Guidance Scale",
|
201 |
+
)
|
202 |
+
scale = gr.Slider(
|
203 |
+
minimum=1,
|
204 |
+
maximum=5,
|
205 |
+
value=2,
|
206 |
+
step=1,
|
207 |
+
label="Magnification Scale",
|
208 |
+
interactive=not IS_SPACE,
|
209 |
+
)
|
210 |
+
controlnet_conditioning_scale = gr.Slider(
|
211 |
+
minimum=0,
|
212 |
+
maximum=1,
|
213 |
+
step=0.001,
|
214 |
+
value=0.5,
|
215 |
+
label="ControlNet Conditioning Scale",
|
216 |
+
)
|
217 |
+
strength = gr.Slider(
|
218 |
+
minimum=0,
|
219 |
+
maximum=1,
|
220 |
+
step=0.001,
|
221 |
+
value=1,
|
222 |
+
label="Strength",
|
223 |
+
)
|
224 |
+
controlnet_start = gr.Slider(
|
225 |
+
minimum=0,
|
226 |
+
maximum=1,
|
227 |
+
step=0.001,
|
228 |
+
value=0.0,
|
229 |
+
label="ControlNet Start",
|
230 |
+
)
|
231 |
+
controlnet_end = gr.Slider(
|
232 |
+
minimum=0.0,
|
233 |
+
maximum=1.0,
|
234 |
+
step=0.001,
|
235 |
+
value=1.0,
|
236 |
+
label="ControlNet End",
|
237 |
+
)
|
238 |
+
guassian_sigma = gr.Slider(
|
239 |
+
minimum=0.01,
|
240 |
+
maximum=10.0,
|
241 |
+
step=0.1,
|
242 |
+
value=2.0,
|
243 |
+
label="(Anyline) Guassian Sigma",
|
244 |
+
)
|
245 |
+
intensity_threshold = gr.Slider(
|
246 |
+
minimum=0,
|
247 |
+
maximum=255,
|
248 |
+
step=1,
|
249 |
+
value=3,
|
250 |
+
label="(Anyline) Intensity Threshold",
|
251 |
+
)
|
252 |
+
|
253 |
+
btn = gr.Button()
|
254 |
+
with gr.Column(scale=2):
|
255 |
+
with gr.Group():
|
256 |
+
image_slider = ImageSlider(position=0.5)
|
257 |
+
with gr.Row():
|
258 |
+
padded_image = gr.Image(type="pil", label="Padded Image")
|
259 |
+
anyline_image = gr.Image(type="pil", label="Anyline Image")
|
260 |
+
inputs = [
|
261 |
+
image_input,
|
262 |
+
prompt,
|
263 |
+
negative_prompt,
|
264 |
+
seed,
|
265 |
+
guidance_scale,
|
266 |
+
scale,
|
267 |
+
controlnet_conditioning_scale,
|
268 |
+
strength,
|
269 |
+
controlnet_start,
|
270 |
+
controlnet_end,
|
271 |
+
guassian_sigma,
|
272 |
+
intensity_threshold,
|
273 |
+
]
|
274 |
+
outputs = [image_slider, padded_image, anyline_image]
|
275 |
+
btn.click(lambda x: None, inputs=None, outputs=image_slider).then(
|
276 |
+
fn=predict, inputs=inputs, outputs=outputs
|
277 |
+
)
|
278 |
+
gr.Examples(
|
279 |
+
fn=predict,
|
280 |
+
inputs=inputs,
|
281 |
+
outputs=outputs,
|
282 |
+
examples=[
|
283 |
+
[
|
284 |
+
"./examples/lara.jpeg",
|
285 |
+
"photography of lara croft 8k high definition award winning",
|
286 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
287 |
+
5436236241,
|
288 |
+
8.5,
|
289 |
+
2,
|
290 |
+
0.8,
|
291 |
+
1.0,
|
292 |
+
0.0,
|
293 |
+
0.9,
|
294 |
+
2,
|
295 |
+
3,
|
296 |
+
],
|
297 |
+
[
|
298 |
+
"./examples/cybetruck.jpeg",
|
299 |
+
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
|
300 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
301 |
+
383472451451,
|
302 |
+
8.5,
|
303 |
+
2,
|
304 |
+
0.8,
|
305 |
+
0.8,
|
306 |
+
0.0,
|
307 |
+
0.9,
|
308 |
+
2,
|
309 |
+
3,
|
310 |
+
],
|
311 |
+
[
|
312 |
+
"./examples/jesus.png",
|
313 |
+
"a photorealistic painting of Jesus Christ, 4k high definition",
|
314 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
315 |
+
13317204146129588000,
|
316 |
+
8.5,
|
317 |
+
2,
|
318 |
+
0.8,
|
319 |
+
0.8,
|
320 |
+
0.0,
|
321 |
+
0.9,
|
322 |
+
2,
|
323 |
+
3,
|
324 |
+
],
|
325 |
+
[
|
326 |
+
"./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
|
327 |
+
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
|
328 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
329 |
+
5623124123512,
|
330 |
+
8.5,
|
331 |
+
2,
|
332 |
+
0.8,
|
333 |
+
0.8,
|
334 |
+
0.0,
|
335 |
+
0.9,
|
336 |
+
2,
|
337 |
+
3,
|
338 |
+
],
|
339 |
+
[
|
340 |
+
"./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
|
341 |
+
"a large red flower on a black background 4k high definition",
|
342 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
343 |
+
23123412341234,
|
344 |
+
8.5,
|
345 |
+
2,
|
346 |
+
0.8,
|
347 |
+
0.8,
|
348 |
+
0.0,
|
349 |
+
0.9,
|
350 |
+
2,
|
351 |
+
3,
|
352 |
+
],
|
353 |
+
[
|
354 |
+
"./examples/huggingface.jpg",
|
355 |
+
"photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++",
|
356 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated",
|
357 |
+
12312353423,
|
358 |
+
15.206,
|
359 |
+
2,
|
360 |
+
0.364,
|
361 |
+
0.8,
|
362 |
+
0.0,
|
363 |
+
0.9,
|
364 |
+
2,
|
365 |
+
3,
|
366 |
+
],
|
367 |
+
],
|
368 |
+
cache_examples="lazy",
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
demo.queue(api_open=False)
|
373 |
+
demo.launch(show_api=False)
|