LDM / core /scheduler.py
xrg
first commit
915f69b
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from torch.optim.lr_scheduler import LRScheduler
from accelerate.logging import get_logger
logger = get_logger(__name__)
class CosineWarmupScheduler(LRScheduler):
def __init__(self, optimizer, warmup_iters: int, max_iters: int, initial_lr: float = 1e-10, last_iter: int = -1):
self.warmup_iters = warmup_iters
self.max_iters = max_iters
self.initial_lr = initial_lr
super().__init__(optimizer, last_iter)
def get_lr(self):
logger.debug(f"step count: {self._step_count} | warmup iters: {self.warmup_iters} | max iters: {self.max_iters}")
if self._step_count <= self.warmup_iters:
return [
self.initial_lr + (base_lr - self.initial_lr) * self._step_count / self.warmup_iters
for base_lr in self.base_lrs]
else:
cos_iter = self._step_count - self.warmup_iters
cos_max_iter = self.max_iters - self.warmup_iters
cos_theta = cos_iter / cos_max_iter * math.pi
cos_lr = [base_lr * (1 + math.cos(cos_theta)) / 2 for base_lr in self.base_lrs]
return cos_lr