|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
|
|
"""
|
|
Transformer blocks that process the input and optionally use condition and modulation.
|
|
"""
|
|
|
|
def __init__(self, block_type: str,
|
|
num_layers: int, num_heads: int,
|
|
inner_dim: int, cond_dim: int = None, mod_dim: int = None,
|
|
eps: float = 1e-6):
|
|
super().__init__()
|
|
self.block_type = block_type
|
|
self.layers = nn.ModuleList([
|
|
self._block_fn(inner_dim, cond_dim, mod_dim)(
|
|
num_heads=num_heads,
|
|
eps=eps,
|
|
)
|
|
for _ in range(num_layers)
|
|
])
|
|
self.norm = nn.LayerNorm(inner_dim, eps=eps)
|
|
|
|
@property
|
|
def block_type(self):
|
|
return self._block_type
|
|
|
|
@block_type.setter
|
|
def block_type(self, block_type):
|
|
assert block_type in ['basic', 'cond', 'mod', 'cond_mod'], \
|
|
f"Unsupported block type: {block_type}"
|
|
self._block_type = block_type
|
|
|
|
def _block_fn(self, inner_dim, cond_dim, mod_dim):
|
|
assert inner_dim is not None, f"inner_dim must always be specified"
|
|
if self.block_type == 'basic':
|
|
assert cond_dim is None and mod_dim is None, \
|
|
f"Condition and modulation are not supported for BasicBlock"
|
|
from .block import BasicBlock
|
|
|
|
return partial(BasicBlock, inner_dim=inner_dim)
|
|
elif self.block_type == 'cond':
|
|
assert cond_dim is not None, f"Condition dimension must be specified for ConditionBlock"
|
|
assert mod_dim is None, f"Modulation dimension is not supported for ConditionBlock"
|
|
from .block import ConditionBlock
|
|
|
|
return partial(ConditionBlock, inner_dim=inner_dim, cond_dim=cond_dim)
|
|
elif self.block_type == 'mod':
|
|
|
|
raise NotImplementedError(f"modulation without condition is not implemented")
|
|
elif self.block_type == 'cond_mod':
|
|
assert cond_dim is not None and mod_dim is not None, \
|
|
f"Condition and modulation dimensions must be specified for ConditionModulationBlock"
|
|
from .block import ConditionModulationBlock
|
|
|
|
return partial(ConditionModulationBlock, inner_dim=inner_dim, cond_dim=cond_dim, mod_dim=mod_dim)
|
|
else:
|
|
raise ValueError(f"Unsupported block type during runtime: {self.block_type}")
|
|
|
|
def assert_runtime_integrity(self, x: torch.Tensor, cond: torch.Tensor, mod: torch.Tensor):
|
|
assert x is not None, f"Input tensor must be specified"
|
|
if self.block_type == 'basic':
|
|
assert cond is None and mod is None, \
|
|
f"Condition and modulation are not supported for BasicBlock"
|
|
elif self.block_type == 'cond':
|
|
assert cond is not None and mod is None, \
|
|
f"Condition must be specified and modulation is not supported for ConditionBlock"
|
|
elif self.block_type == 'mod':
|
|
raise NotImplementedError(f"modulation without condition is not implemented")
|
|
else:
|
|
assert cond is not None and mod is not None, \
|
|
f"Condition and modulation must be specified for ConditionModulationBlock"
|
|
|
|
def forward_layer(self, layer: nn.Module, x: torch.Tensor, cond: torch.Tensor, mod: torch.Tensor):
|
|
if self.block_type == 'basic':
|
|
return layer(x)
|
|
elif self.block_type == 'cond':
|
|
return layer(x, cond)
|
|
elif self.block_type == 'mod':
|
|
return layer(x, mod)
|
|
else:
|
|
return layer(x, cond, mod)
|
|
|
|
def forward(self, x: torch.Tensor, cond: torch.Tensor = None, mod: torch.Tensor = None):
|
|
|
|
|
|
|
|
self.assert_runtime_integrity(x, cond, mod)
|
|
for layer in self.layers:
|
|
x = self.forward_layer(layer, x, cond, mod)
|
|
x = self.norm(x)
|
|
return x
|
|
|