Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -17,13 +17,18 @@ base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers"
17
  lora_weights_path = "./pytorch_lora_weights.safetensors"
18
 
19
  # Load the base model
20
- pipeline = DiffusionPipeline.from_pretrained(base_model_repo, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_auth_token=HUGGINGFACE_TOKEN)
 
 
 
 
21
  pipeline.load_lora_weights(lora_weights_path)
22
- pipeline.enable_sequential_cpu_offload()
 
23
  pipeline = pipeline.to(device)
24
 
25
  MAX_SEED = np.iinfo(np.int32).max
26
- MAX_IMAGE_SIZE = 1024
27
 
28
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
29
  if randomize_seed:
@@ -128,9 +133,9 @@ with gr.Blocks(css=css) as demo:
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
- maximum=100,
132
  step=1,
133
- value=50,
134
  )
135
 
136
  gr.Examples(
 
17
  lora_weights_path = "./pytorch_lora_weights.safetensors"
18
 
19
  # Load the base model
20
+ pipeline = DiffusionPipeline.from_pretrained(
21
+ base_model_repo,
22
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
23
+ use_auth_token=HUGGINGFACE_TOKEN
24
+ )
25
  pipeline.load_lora_weights(lora_weights_path)
26
+ pipeline.enable_sequential_cpu_offload() # Efficient memory usage
27
+ pipeline.enable_xformers_memory_efficient_attention() # Enable xformers memory efficient attention
28
  pipeline = pipeline.to(device)
29
 
30
  MAX_SEED = np.iinfo(np.int32).max
31
+ MAX_IMAGE_SIZE = 768 # Reduce max image size to fit within memory constraints
32
 
33
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
34
  if randomize_seed:
 
133
  num_inference_steps = gr.Slider(
134
  label="Number of inference steps",
135
  minimum=1,
136
+ maximum=50,
137
  step=1,
138
+ value=30,
139
  )
140
 
141
  gr.Examples(