Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
import warnings | |
from logging import getLogger | |
from multiprocessing import cpu_count | |
from pathlib import Path | |
from typing import Any | |
import lightning.pytorch as pl | |
import torch | |
from lightning.pytorch.accelerators import MPSAccelerator, TPUAccelerator | |
from lightning.pytorch.callbacks import DeviceStatsMonitor | |
from lightning.pytorch.loggers import TensorBoardLogger | |
from lightning.pytorch.strategies.ddp import DDPStrategy | |
from lightning.pytorch.tuner import Tuner | |
from torch.cuda.amp import autocast | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard.writer import SummaryWriter | |
import so_vits_svc_fork.f0 | |
import so_vits_svc_fork.modules.commons as commons | |
import so_vits_svc_fork.utils | |
from . import utils | |
from .dataset import TextAudioCollate, TextAudioDataset | |
from .logger import is_notebook | |
from .modules.descriminators import MultiPeriodDiscriminator | |
from .modules.losses import discriminator_loss, feature_loss, generator_loss, kl_loss | |
from .modules.mel_processing import mel_spectrogram_torch | |
from .modules.synthesizers import SynthesizerTrn | |
LOG = getLogger(__name__) | |
torch.set_float32_matmul_precision("high") | |
class VCDataModule(pl.LightningDataModule): | |
batch_size: int | |
def __init__(self, hparams: Any): | |
super().__init__() | |
self.__hparams = hparams | |
self.batch_size = hparams.train.batch_size | |
if not isinstance(self.batch_size, int): | |
self.batch_size = 1 | |
self.collate_fn = TextAudioCollate() | |
# these should be called in setup(), but we need to calculate check_val_every_n_epoch | |
self.train_dataset = TextAudioDataset(self.__hparams, is_validation=False) | |
self.val_dataset = TextAudioDataset(self.__hparams, is_validation=True) | |
def train_dataloader(self): | |
return DataLoader( | |
self.train_dataset, | |
num_workers=min(cpu_count(), self.__hparams.train.get("num_workers", 8)), | |
batch_size=self.batch_size, | |
collate_fn=self.collate_fn, | |
persistent_workers=True, | |
) | |
def val_dataloader(self): | |
return DataLoader( | |
self.val_dataset, | |
batch_size=1, | |
collate_fn=self.collate_fn, | |
) | |
def train( | |
config_path: Path | str, model_path: Path | str, reset_optimizer: bool = False | |
): | |
config_path = Path(config_path) | |
model_path = Path(model_path) | |
hparams = utils.get_backup_hparams(config_path, model_path) | |
utils.ensure_pretrained_model( | |
model_path, | |
hparams.model.get( | |
"pretrained", | |
{ | |
"D_0.pth": "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/D_0.pth", | |
"G_0.pth": "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/G_0.pth", | |
}, | |
), | |
) | |
datamodule = VCDataModule(hparams) | |
strategy = ( | |
( | |
"ddp_find_unused_parameters_true" | |
if os.name != "nt" | |
else DDPStrategy(find_unused_parameters=True, process_group_backend="gloo") | |
) | |
if torch.cuda.device_count() > 1 | |
else "auto" | |
) | |
LOG.info(f"Using strategy: {strategy}") | |
trainer = pl.Trainer( | |
logger=TensorBoardLogger( | |
model_path, "lightning_logs", hparams.train.get("log_version", 0) | |
), | |
# profiler="simple", | |
val_check_interval=hparams.train.eval_interval, | |
max_epochs=hparams.train.epochs, | |
check_val_every_n_epoch=None, | |
precision="16-mixed" | |
if hparams.train.fp16_run | |
else "bf16-mixed" | |
if hparams.train.get("bf16_run", False) | |
else 32, | |
strategy=strategy, | |
callbacks=([pl.callbacks.RichProgressBar()] if not is_notebook() else []) | |
+ [DeviceStatsMonitor()], | |
benchmark=True, | |
enable_checkpointing=False, | |
) | |
tuner = Tuner(trainer) | |
model = VitsLightning(reset_optimizer=reset_optimizer, **hparams) | |
# automatic batch size scaling | |
batch_size = hparams.train.batch_size | |
batch_split = str(batch_size).split("-") | |
batch_size = batch_split[0] | |
init_val = 2 if len(batch_split) <= 1 else int(batch_split[1]) | |
max_trials = 25 if len(batch_split) <= 2 else int(batch_split[2]) | |
if batch_size == "auto": | |
batch_size = "binsearch" | |
if batch_size in ["power", "binsearch"]: | |
model.tuning = True | |
tuner.scale_batch_size( | |
model, | |
mode=batch_size, | |
datamodule=datamodule, | |
steps_per_trial=1, | |
init_val=init_val, | |
max_trials=max_trials, | |
) | |
model.tuning = False | |
else: | |
batch_size = int(batch_size) | |
# automatic learning rate scaling is not supported for multiple optimizers | |
"""if hparams.train.learning_rate == "auto": | |
lr_finder = tuner.lr_find(model) | |
LOG.info(lr_finder.results) | |
fig = lr_finder.plot(suggest=True) | |
fig.savefig(model_path / "lr_finder.png")""" | |
trainer.fit(model, datamodule=datamodule) | |
class VitsLightning(pl.LightningModule): | |
def __init__(self, reset_optimizer: bool = False, **hparams: Any): | |
super().__init__() | |
self._temp_epoch = 0 # Add this line to initialize the _temp_epoch attribute | |
self.save_hyperparameters("reset_optimizer") | |
self.save_hyperparameters(*[k for k in hparams.keys()]) | |
torch.manual_seed(self.hparams.train.seed) | |
self.net_g = SynthesizerTrn( | |
self.hparams.data.filter_length // 2 + 1, | |
self.hparams.train.segment_size // self.hparams.data.hop_length, | |
**self.hparams.model, | |
) | |
self.net_d = MultiPeriodDiscriminator(self.hparams.model.use_spectral_norm) | |
self.automatic_optimization = False | |
self.learning_rate = self.hparams.train.learning_rate | |
self.optim_g = torch.optim.AdamW( | |
self.net_g.parameters(), | |
self.learning_rate, | |
betas=self.hparams.train.betas, | |
eps=self.hparams.train.eps, | |
) | |
self.optim_d = torch.optim.AdamW( | |
self.net_d.parameters(), | |
self.learning_rate, | |
betas=self.hparams.train.betas, | |
eps=self.hparams.train.eps, | |
) | |
self.scheduler_g = torch.optim.lr_scheduler.ExponentialLR( | |
self.optim_g, gamma=self.hparams.train.lr_decay | |
) | |
self.scheduler_d = torch.optim.lr_scheduler.ExponentialLR( | |
self.optim_d, gamma=self.hparams.train.lr_decay | |
) | |
self.optimizers_count = 2 | |
self.load(reset_optimizer) | |
self.tuning = False | |
def on_train_start(self) -> None: | |
if not self.tuning: | |
self.set_current_epoch(self._temp_epoch) | |
total_batch_idx = self._temp_epoch * len(self.trainer.train_dataloader) | |
self.set_total_batch_idx(total_batch_idx) | |
global_step = total_batch_idx * self.optimizers_count | |
self.set_global_step(global_step) | |
# check if using tpu or mps | |
if isinstance(self.trainer.accelerator, (TPUAccelerator, MPSAccelerator)): | |
# patch torch.stft to use cpu | |
LOG.warning("Using TPU/MPS. Patching torch.stft to use cpu.") | |
def stft( | |
input: torch.Tensor, | |
n_fft: int, | |
hop_length: int | None = None, | |
win_length: int | None = None, | |
window: torch.Tensor | None = None, | |
center: bool = True, | |
pad_mode: str = "reflect", | |
normalized: bool = False, | |
onesided: bool | None = None, | |
return_complex: bool | None = None, | |
) -> torch.Tensor: | |
device = input.device | |
input = input.cpu() | |
if window is not None: | |
window = window.cpu() | |
return torch.functional.stft( | |
input, | |
n_fft, | |
hop_length, | |
win_length, | |
window, | |
center, | |
pad_mode, | |
normalized, | |
onesided, | |
return_complex, | |
).to(device) | |
torch.stft = stft | |
elif "bf" in self.trainer.precision: | |
LOG.warning("Using bf. Patching torch.stft to use fp32.") | |
def stft( | |
input: torch.Tensor, | |
n_fft: int, | |
hop_length: int | None = None, | |
win_length: int | None = None, | |
window: torch.Tensor | None = None, | |
center: bool = True, | |
pad_mode: str = "reflect", | |
normalized: bool = False, | |
onesided: bool | None = None, | |
return_complex: bool | None = None, | |
) -> torch.Tensor: | |
dtype = input.dtype | |
input = input.float() | |
if window is not None: | |
window = window.float() | |
return torch.functional.stft( | |
input, | |
n_fft, | |
hop_length, | |
win_length, | |
window, | |
center, | |
pad_mode, | |
normalized, | |
onesided, | |
return_complex, | |
).to(dtype) | |
torch.stft = stft | |
def on_train_end(self) -> None: | |
self.save_checkpoints(adjust=0) | |
def save_checkpoints(self, adjust=1): | |
if self.tuning or self.trainer.sanity_checking: | |
return | |
# only save checkpoints if we are on the main device | |
if ( | |
hasattr(self.device, "index") | |
and self.device.index != None | |
and self.device.index != 0 | |
): | |
return | |
# `on_train_end` will be the actual epoch, not a -1, so we have to call it with `adjust = 0` | |
current_epoch = self.current_epoch + adjust | |
total_batch_idx = self.total_batch_idx - 1 + adjust | |
utils.save_checkpoint( | |
self.net_g, | |
self.optim_g, | |
self.learning_rate, | |
current_epoch, | |
Path(self.hparams.model_dir) | |
/ f"G_{total_batch_idx if self.hparams.train.get('ckpt_name_by_step', False) else current_epoch}.pth", | |
) | |
utils.save_checkpoint( | |
self.net_d, | |
self.optim_d, | |
self.learning_rate, | |
current_epoch, | |
Path(self.hparams.model_dir) | |
/ f"D_{total_batch_idx if self.hparams.train.get('ckpt_name_by_step', False) else current_epoch}.pth", | |
) | |
keep_ckpts = self.hparams.train.get("keep_ckpts", 0) | |
if keep_ckpts > 0: | |
utils.clean_checkpoints( | |
path_to_models=self.hparams.model_dir, | |
n_ckpts_to_keep=keep_ckpts, | |
sort_by_time=True, | |
) | |
def set_current_epoch(self, epoch: int): | |
LOG.info(f"Setting current epoch to {epoch}") | |
self.trainer.fit_loop.epoch_progress.current.completed = epoch | |
self.trainer.fit_loop.epoch_progress.current.processed = epoch | |
assert self.current_epoch == epoch, f"{self.current_epoch} != {epoch}" | |
def set_global_step(self, global_step: int): | |
LOG.info(f"Setting global step to {global_step}") | |
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed = ( | |
global_step | |
) | |
self.trainer.fit_loop.epoch_loop.automatic_optimization.optim_progress.optimizer.step.total.completed = ( | |
global_step | |
) | |
assert self.global_step == global_step, f"{self.global_step} != {global_step}" | |
def set_total_batch_idx(self, total_batch_idx: int): | |
LOG.info(f"Setting total batch idx to {total_batch_idx}") | |
self.trainer.fit_loop.epoch_loop.batch_progress.total.ready = ( | |
total_batch_idx + 1 | |
) | |
self.trainer.fit_loop.epoch_loop.batch_progress.total.completed = ( | |
total_batch_idx | |
) | |
assert ( | |
self.total_batch_idx == total_batch_idx + 1 | |
), f"{self.total_batch_idx} != {total_batch_idx + 1}" | |
def total_batch_idx(self) -> int: | |
return self.trainer.fit_loop.epoch_loop.total_batch_idx + 1 | |
def load(self, reset_optimizer: bool = False): | |
latest_g_path = utils.latest_checkpoint_path(self.hparams.model_dir, "G_*.pth") | |
latest_d_path = utils.latest_checkpoint_path(self.hparams.model_dir, "D_*.pth") | |
if latest_g_path is not None and latest_d_path is not None: | |
try: | |
_, _, _, epoch = utils.load_checkpoint( | |
latest_g_path, | |
self.net_g, | |
self.optim_g, | |
reset_optimizer, | |
) | |
_, _, _, epoch = utils.load_checkpoint( | |
latest_d_path, | |
self.net_d, | |
self.optim_d, | |
reset_optimizer, | |
) | |
self._temp_epoch = epoch | |
self.scheduler_g.last_epoch = epoch - 1 | |
self.scheduler_d.last_epoch = epoch - 1 | |
except Exception as e: | |
raise RuntimeError("Failed to load checkpoint") from e | |
else: | |
LOG.warning("No checkpoint found. Start from scratch.") | |
def configure_optimizers(self): | |
return [self.optim_g, self.optim_d], [self.scheduler_g, self.scheduler_d] | |
def log_image_dict( | |
self, image_dict: dict[str, Any], dataformats: str = "HWC" | |
) -> None: | |
if not isinstance(self.logger, TensorBoardLogger): | |
warnings.warn("Image logging is only supported with TensorBoardLogger.") | |
return | |
writer: SummaryWriter = self.logger.experiment | |
for k, v in image_dict.items(): | |
try: | |
writer.add_image(k, v, self.total_batch_idx, dataformats=dataformats) | |
except Exception as e: | |
warnings.warn(f"Failed to log image {k}: {e}") | |
def log_audio_dict(self, audio_dict: dict[str, Any]) -> None: | |
if not isinstance(self.logger, TensorBoardLogger): | |
warnings.warn("Audio logging is only supported with TensorBoardLogger.") | |
return | |
writer: SummaryWriter = self.logger.experiment | |
for k, v in audio_dict.items(): | |
writer.add_audio( | |
k, | |
v.float(), | |
self.total_batch_idx, | |
sample_rate=self.hparams.data.sampling_rate, | |
) | |
def log_dict_(self, log_dict: dict[str, Any], **kwargs) -> None: | |
if not isinstance(self.logger, TensorBoardLogger): | |
warnings.warn("Logging is only supported with TensorBoardLogger.") | |
return | |
writer: SummaryWriter = self.logger.experiment | |
for k, v in log_dict.items(): | |
writer.add_scalar(k, v, self.total_batch_idx) | |
kwargs["logger"] = False | |
self.log_dict(log_dict, **kwargs) | |
def log_(self, key: str, value: Any, **kwargs) -> None: | |
self.log_dict_({key: value}, **kwargs) | |
def training_step(self, batch: dict[str, torch.Tensor], batch_idx: int) -> None: | |
self.net_g.train() | |
self.net_d.train() | |
# get optims | |
optim_g, optim_d = self.optimizers() | |
# Generator | |
# train | |
self.toggle_optimizer(optim_g) | |
c, f0, spec, mel, y, g, lengths, uv = batch | |
( | |
y_hat, | |
y_hat_mb, | |
ids_slice, | |
z_mask, | |
(z, z_p, m_p, logs_p, m_q, logs_q), | |
pred_lf0, | |
norm_lf0, | |
lf0, | |
) = self.net_g(c, f0, uv, spec, g=g, c_lengths=lengths, spec_lengths=lengths) | |
y_mel = commons.slice_segments( | |
mel, | |
ids_slice, | |
self.hparams.train.segment_size // self.hparams.data.hop_length, | |
) | |
y_hat_mel = mel_spectrogram_torch(y_hat.squeeze(1), self.hparams) | |
y_mel = y_mel[..., : y_hat_mel.shape[-1]] | |
y = commons.slice_segments( | |
y, | |
ids_slice * self.hparams.data.hop_length, | |
self.hparams.train.segment_size, | |
) | |
y = y[..., : y_hat.shape[-1]] | |
# generator loss | |
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = self.net_d(y, y_hat) | |
with autocast(enabled=False): | |
loss_mel = F.l1_loss(y_mel, y_hat_mel) * self.hparams.train.c_mel | |
loss_kl = ( | |
kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * self.hparams.train.c_kl | |
) | |
loss_fm = feature_loss(fmap_r, fmap_g) | |
loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
loss_lf0 = F.mse_loss(pred_lf0, lf0) | |
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0 | |
# MB-iSTFT-VITS | |
loss_subband = torch.tensor(0.0) | |
if self.hparams.model.get("type_") == "mb-istft": | |
from .modules.decoders.mb_istft import PQMF, subband_stft_loss | |
y_mb = PQMF(y.device, self.hparams.model.subbands).analysis(y) | |
loss_subband = subband_stft_loss(self.hparams, y_mb, y_hat_mb) | |
loss_gen_all += loss_subband | |
# log loss | |
self.log_("lr", self.optim_g.param_groups[0]["lr"]) | |
self.log_dict_( | |
{ | |
"loss/g/total": loss_gen_all, | |
"loss/g/fm": loss_fm, | |
"loss/g/mel": loss_mel, | |
"loss/g/kl": loss_kl, | |
"loss/g/lf0": loss_lf0, | |
}, | |
prog_bar=True, | |
) | |
if self.hparams.model.get("type_") == "mb-istft": | |
self.log_("loss/g/subband", loss_subband) | |
if self.total_batch_idx % self.hparams.train.log_interval == 0: | |
self.log_image_dict( | |
{ | |
"slice/mel_org": utils.plot_spectrogram_to_numpy( | |
y_mel[0].data.cpu().float().numpy() | |
), | |
"slice/mel_gen": utils.plot_spectrogram_to_numpy( | |
y_hat_mel[0].data.cpu().float().numpy() | |
), | |
"all/mel": utils.plot_spectrogram_to_numpy( | |
mel[0].data.cpu().float().numpy() | |
), | |
"all/lf0": so_vits_svc_fork.utils.plot_data_to_numpy( | |
lf0[0, 0, :].cpu().float().numpy(), | |
pred_lf0[0, 0, :].detach().cpu().float().numpy(), | |
), | |
"all/norm_lf0": so_vits_svc_fork.utils.plot_data_to_numpy( | |
lf0[0, 0, :].cpu().float().numpy(), | |
norm_lf0[0, 0, :].detach().cpu().float().numpy(), | |
), | |
} | |
) | |
accumulate_grad_batches = self.hparams.train.get("accumulate_grad_batches", 1) | |
should_update = ( | |
batch_idx + 1 | |
) % accumulate_grad_batches == 0 or self.trainer.is_last_batch | |
# optimizer | |
self.manual_backward(loss_gen_all / accumulate_grad_batches) | |
if should_update: | |
self.log_( | |
"grad_norm_g", commons.clip_grad_value_(self.net_g.parameters(), None) | |
) | |
optim_g.step() | |
optim_g.zero_grad() | |
self.untoggle_optimizer(optim_g) | |
# Discriminator | |
# train | |
self.toggle_optimizer(optim_d) | |
y_d_hat_r, y_d_hat_g, _, _ = self.net_d(y, y_hat.detach()) | |
# discriminator loss | |
with autocast(enabled=False): | |
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( | |
y_d_hat_r, y_d_hat_g | |
) | |
loss_disc_all = loss_disc | |
# log loss | |
self.log_("loss/d/total", loss_disc_all, prog_bar=True) | |
# optimizer | |
self.manual_backward(loss_disc_all / accumulate_grad_batches) | |
if should_update: | |
self.log_( | |
"grad_norm_d", commons.clip_grad_value_(self.net_d.parameters(), None) | |
) | |
optim_d.step() | |
optim_d.zero_grad() | |
self.untoggle_optimizer(optim_d) | |
# end of epoch | |
if self.trainer.is_last_batch: | |
self.scheduler_g.step() | |
self.scheduler_d.step() | |
def validation_step(self, batch, batch_idx): | |
# avoid logging with wrong global step | |
if self.global_step == 0: | |
return | |
with torch.no_grad(): | |
self.net_g.eval() | |
c, f0, _, mel, y, g, _, uv = batch | |
y_hat = self.net_g.infer(c, f0, uv, g=g) | |
y_hat_mel = mel_spectrogram_torch(y_hat.squeeze(1).float(), self.hparams) | |
self.log_audio_dict( | |
{f"gen/audio_{batch_idx}": y_hat[0], f"gt/audio_{batch_idx}": y[0]} | |
) | |
self.log_image_dict( | |
{ | |
"gen/mel": utils.plot_spectrogram_to_numpy( | |
y_hat_mel[0].cpu().float().numpy() | |
), | |
"gt/mel": utils.plot_spectrogram_to_numpy( | |
mel[0].cpu().float().numpy() | |
), | |
} | |
) | |
def on_validation_end(self) -> None: | |
self.save_checkpoints() | |