RockeyCoss
add code files”
51f6859
raw
history blame
8.38 kB
# Copyright (c) OpenMMLab. All rights reserved.
import os
import random
import numpy as np
import torch
import torch.distributed as dist
from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner,
Fp16OptimizerHook, OptimizerHook, build_runner,
get_dist_info)
from mmdet.core import DistEvalHook, EvalHook, build_optimizer
from mmdet.datasets import (build_dataloader, build_dataset,
replace_ImageToTensor)
from mmdet.utils import (build_ddp, build_dp, compat_cfg,
find_latest_checkpoint, get_root_logger)
def init_random_seed(seed=None, device='cuda'):
"""Initialize random seed.
If the seed is not set, the seed will be automatically randomized,
and then broadcast to all processes to prevent some potential bugs.
Args:
seed (int, Optional): The seed. Default to None.
device (str): The device where the seed will be put on.
Default to 'cuda'.
Returns:
int: Seed to be used.
"""
if seed is not None:
return seed
# Make sure all ranks share the same random seed to prevent
# some potential bugs. Please refer to
# https://github.com/open-mmlab/mmdetection/issues/6339
rank, world_size = get_dist_info()
seed = np.random.randint(2**31)
if world_size == 1:
return seed
if rank == 0:
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
else:
random_num = torch.tensor(0, dtype=torch.int32, device=device)
dist.broadcast(random_num, src=0)
return random_num.item()
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def auto_scale_lr(cfg, distributed, logger):
"""Automatically scaling LR according to GPU number and sample per GPU.
Args:
cfg (config): Training config.
distributed (bool): Using distributed or not.
logger (logging.Logger): Logger.
"""
# Get flag from config
if ('auto_scale_lr' not in cfg) or \
(not cfg.auto_scale_lr.get('enable', False)):
logger.info('Automatic scaling of learning rate (LR)'
' has been disabled.')
return
# Get base batch size from config
base_batch_size = cfg.auto_scale_lr.get('base_batch_size', None)
if base_batch_size is None:
return
# Get gpu number
if distributed:
_, world_size = get_dist_info()
num_gpus = len(range(world_size))
else:
num_gpus = len(cfg.gpu_ids)
# calculate the batch size
samples_per_gpu = cfg.data.train_dataloader.samples_per_gpu
batch_size = num_gpus * samples_per_gpu
logger.info(f'Training with {num_gpus} GPU(s) with {samples_per_gpu} '
f'samples per GPU. The total batch size is {batch_size}.')
if batch_size != base_batch_size:
# scale LR with
# [linear scaling rule](https://arxiv.org/abs/1706.02677)
scaled_lr = (batch_size / base_batch_size) * cfg.optimizer.lr
logger.info('LR has been automatically scaled '
f'from {cfg.optimizer.lr} to {scaled_lr}')
cfg.optimizer.lr = scaled_lr
else:
logger.info('The batch size match the '
f'base batch size: {base_batch_size}, '
f'will not scaling the LR ({cfg.optimizer.lr}).')
def train_detector(model,
dataset,
cfg,
distributed=False,
validate=False,
timestamp=None,
meta=None):
cfg = compat_cfg(cfg)
logger = get_root_logger(log_level=cfg.log_level)
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
runner_type = 'EpochBasedRunner' if 'runner' not in cfg else cfg.runner[
'type']
train_dataloader_default_args = dict(
samples_per_gpu=2,
workers_per_gpu=2,
# `num_gpus` will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed,
runner_type=runner_type,
persistent_workers=False)
train_loader_cfg = {
**train_dataloader_default_args,
**cfg.data.get('train_dataloader', {})
}
data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]
# put model on gpus
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = build_ddp(
model,
cfg.device,
device_ids=[int(os.environ['LOCAL_RANK'])],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids)
# build optimizer
auto_scale_lr(cfg, distributed, logger)
optimizer = build_optimizer(model, cfg.optimizer)
runner = build_runner(
cfg.runner,
default_args=dict(
model=model,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=meta))
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is None and cfg.get('device', None) == 'npu':
fp16_cfg = dict(loss_scale='dynamic')
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
elif distributed and 'type' not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(
cfg.lr_config,
optimizer_config,
cfg.checkpoint_config,
cfg.log_config,
cfg.get('momentum_config', None),
custom_hooks_config=cfg.get('custom_hooks', None))
if distributed:
if isinstance(runner, EpochBasedRunner):
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
val_dataloader_default_args = dict(
samples_per_gpu=1,
workers_per_gpu=2,
dist=distributed,
shuffle=False,
persistent_workers=False)
val_dataloader_args = {
**val_dataloader_default_args,
**cfg.data.get('val_dataloader', {})
}
# Support batch_size > 1 in validation
if val_dataloader_args['samples_per_gpu'] > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.val.pipeline = replace_ImageToTensor(
cfg.data.val.pipeline)
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
val_dataloader = build_dataloader(val_dataset, **val_dataloader_args)
eval_cfg = cfg.get('evaluation', {})
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
eval_hook = DistEvalHook if distributed else EvalHook
# In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the
# priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'.
runner.register_hook(
eval_hook(val_dataloader, **eval_cfg), priority='LOW')
resume_from = None
if cfg.resume_from is None and cfg.get('auto_resume'):
resume_from = find_latest_checkpoint(cfg.work_dir)
if resume_from is not None:
cfg.resume_from = resume_from
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow)