Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import Conv2d, Linear, build_activation_layer | |
from mmcv.cnn.bricks.transformer import FFN, build_positional_encoding | |
from mmcv.runner import force_fp32 | |
from mmdet.core import (bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh, | |
build_assigner, build_sampler, multi_apply, | |
reduce_mean) | |
from mmdet.models.utils import build_transformer | |
from ..builder import HEADS, build_loss | |
from .anchor_free_head import AnchorFreeHead | |
class DETRHead(AnchorFreeHead): | |
"""Implements the DETR transformer head. | |
See `paper: End-to-End Object Detection with Transformers | |
<https://arxiv.org/pdf/2005.12872>`_ for details. | |
Args: | |
num_classes (int): Number of categories excluding the background. | |
in_channels (int): Number of channels in the input feature map. | |
num_query (int): Number of query in Transformer. | |
num_reg_fcs (int, optional): Number of fully-connected layers used in | |
`FFN`, which is then used for the regression head. Default 2. | |
transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer. | |
Default: None. | |
sync_cls_avg_factor (bool): Whether to sync the avg_factor of | |
all ranks. Default to False. | |
positional_encoding (obj:`mmcv.ConfigDict`|dict): | |
Config for position encoding. | |
loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the | |
classification loss. Default `CrossEntropyLoss`. | |
loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the | |
regression loss. Default `L1Loss`. | |
loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the | |
regression iou loss. Default `GIoULoss`. | |
tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of | |
transformer head. | |
test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of | |
transformer head. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None | |
""" | |
_version = 2 | |
def __init__(self, | |
num_classes, | |
in_channels, | |
num_query=100, | |
num_reg_fcs=2, | |
transformer=None, | |
sync_cls_avg_factor=False, | |
positional_encoding=dict( | |
type='SinePositionalEncoding', | |
num_feats=128, | |
normalize=True), | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
bg_cls_weight=0.1, | |
use_sigmoid=False, | |
loss_weight=1.0, | |
class_weight=1.0), | |
loss_bbox=dict(type='L1Loss', loss_weight=5.0), | |
loss_iou=dict(type='GIoULoss', loss_weight=2.0), | |
train_cfg=dict( | |
assigner=dict( | |
type='HungarianAssigner', | |
cls_cost=dict(type='ClassificationCost', weight=1.), | |
reg_cost=dict(type='BBoxL1Cost', weight=5.0), | |
iou_cost=dict( | |
type='IoUCost', iou_mode='giou', weight=2.0))), | |
test_cfg=dict(max_per_img=100), | |
init_cfg=None, | |
**kwargs): | |
# NOTE here use `AnchorFreeHead` instead of `TransformerHead`, | |
# since it brings inconvenience when the initialization of | |
# `AnchorFreeHead` is called. | |
super(AnchorFreeHead, self).__init__(init_cfg) | |
self.bg_cls_weight = 0 | |
self.sync_cls_avg_factor = sync_cls_avg_factor | |
class_weight = loss_cls.get('class_weight', None) | |
if class_weight is not None and (self.__class__ is DETRHead): | |
assert isinstance(class_weight, float), 'Expected ' \ | |
'class_weight to have type float. Found ' \ | |
f'{type(class_weight)}.' | |
# NOTE following the official DETR rep0, bg_cls_weight means | |
# relative classification weight of the no-object class. | |
bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight) | |
assert isinstance(bg_cls_weight, float), 'Expected ' \ | |
'bg_cls_weight to have type float. Found ' \ | |
f'{type(bg_cls_weight)}.' | |
class_weight = torch.ones(num_classes + 1) * class_weight | |
# set background class as the last indice | |
class_weight[num_classes] = bg_cls_weight | |
loss_cls.update({'class_weight': class_weight}) | |
if 'bg_cls_weight' in loss_cls: | |
loss_cls.pop('bg_cls_weight') | |
self.bg_cls_weight = bg_cls_weight | |
if train_cfg: | |
assert 'assigner' in train_cfg, 'assigner should be provided '\ | |
'when train_cfg is set.' | |
assigner = train_cfg['assigner'] | |
assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \ | |
'The classification weight for loss and matcher should be' \ | |
'exactly the same.' | |
assert loss_bbox['loss_weight'] == assigner['reg_cost'][ | |
'weight'], 'The regression L1 weight for loss and matcher ' \ | |
'should be exactly the same.' | |
assert loss_iou['loss_weight'] == assigner['iou_cost']['weight'], \ | |
'The regression iou weight for loss and matcher should be' \ | |
'exactly the same.' | |
self.assigner = build_assigner(assigner) | |
# DETR sampling=False, so use PseudoSampler | |
sampler_cfg = dict(type='PseudoSampler') | |
self.sampler = build_sampler(sampler_cfg, context=self) | |
self.num_query = num_query | |
self.num_classes = num_classes | |
self.in_channels = in_channels | |
self.num_reg_fcs = num_reg_fcs | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self.fp16_enabled = False | |
self.loss_cls = build_loss(loss_cls) | |
self.loss_bbox = build_loss(loss_bbox) | |
self.loss_iou = build_loss(loss_iou) | |
if self.loss_cls.use_sigmoid: | |
self.cls_out_channels = num_classes | |
else: | |
self.cls_out_channels = num_classes + 1 | |
self.act_cfg = transformer.get('act_cfg', | |
dict(type='ReLU', inplace=True)) | |
self.activate = build_activation_layer(self.act_cfg) | |
self.positional_encoding = build_positional_encoding( | |
positional_encoding) | |
self.transformer = build_transformer(transformer) | |
self.embed_dims = self.transformer.embed_dims | |
assert 'num_feats' in positional_encoding | |
num_feats = positional_encoding['num_feats'] | |
assert num_feats * 2 == self.embed_dims, 'embed_dims should' \ | |
f' be exactly 2 times of num_feats. Found {self.embed_dims}' \ | |
f' and {num_feats}.' | |
self._init_layers() | |
def _init_layers(self): | |
"""Initialize layers of the transformer head.""" | |
self.input_proj = Conv2d( | |
self.in_channels, self.embed_dims, kernel_size=1) | |
self.fc_cls = Linear(self.embed_dims, self.cls_out_channels) | |
self.reg_ffn = FFN( | |
self.embed_dims, | |
self.embed_dims, | |
self.num_reg_fcs, | |
self.act_cfg, | |
dropout=0.0, | |
add_residual=False) | |
self.fc_reg = Linear(self.embed_dims, 4) | |
self.query_embedding = nn.Embedding(self.num_query, self.embed_dims) | |
def init_weights(self): | |
"""Initialize weights of the transformer head.""" | |
# The initialization for transformer is important | |
self.transformer.init_weights() | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, | |
missing_keys, unexpected_keys, error_msgs): | |
"""load checkpoints.""" | |
# NOTE here use `AnchorFreeHead` instead of `TransformerHead`, | |
# since `AnchorFreeHead._load_from_state_dict` should not be | |
# called here. Invoking the default `Module._load_from_state_dict` | |
# is enough. | |
# Names of some parameters in has been changed. | |
version = local_metadata.get('version', None) | |
if (version is None or version < 2) and self.__class__ is DETRHead: | |
convert_dict = { | |
'.self_attn.': '.attentions.0.', | |
'.ffn.': '.ffns.0.', | |
'.multihead_attn.': '.attentions.1.', | |
'.decoder.norm.': '.decoder.post_norm.' | |
} | |
state_dict_keys = list(state_dict.keys()) | |
for k in state_dict_keys: | |
for ori_key, convert_key in convert_dict.items(): | |
if ori_key in k: | |
convert_key = k.replace(ori_key, convert_key) | |
state_dict[convert_key] = state_dict[k] | |
del state_dict[k] | |
super(AnchorFreeHead, | |
self)._load_from_state_dict(state_dict, prefix, local_metadata, | |
strict, missing_keys, | |
unexpected_keys, error_msgs) | |
def forward(self, feats, img_metas): | |
"""Forward function. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
img_metas (list[dict]): List of image information. | |
Returns: | |
tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels. | |
- all_cls_scores_list (list[Tensor]): Classification scores \ | |
for each scale level. Each is a 4D-tensor with shape \ | |
[nb_dec, bs, num_query, cls_out_channels]. Note \ | |
`cls_out_channels` should includes background. | |
- all_bbox_preds_list (list[Tensor]): Sigmoid regression \ | |
outputs for each scale level. Each is a 4D-tensor with \ | |
normalized coordinate format (cx, cy, w, h) and shape \ | |
[nb_dec, bs, num_query, 4]. | |
""" | |
num_levels = len(feats) | |
img_metas_list = [img_metas for _ in range(num_levels)] | |
return multi_apply(self.forward_single, feats, img_metas_list) | |
def forward_single(self, x, img_metas): | |
""""Forward function for a single feature level. | |
Args: | |
x (Tensor): Input feature from backbone's single stage, shape | |
[bs, c, h, w]. | |
img_metas (list[dict]): List of image information. | |
Returns: | |
all_cls_scores (Tensor): Outputs from the classification head, | |
shape [nb_dec, bs, num_query, cls_out_channels]. Note | |
cls_out_channels should includes background. | |
all_bbox_preds (Tensor): Sigmoid outputs from the regression | |
head with normalized coordinate format (cx, cy, w, h). | |
Shape [nb_dec, bs, num_query, 4]. | |
""" | |
# construct binary masks which used for the transformer. | |
# NOTE following the official DETR repo, non-zero values representing | |
# ignored positions, while zero values means valid positions. | |
batch_size = x.size(0) | |
input_img_h, input_img_w = img_metas[0]['batch_input_shape'] | |
masks = x.new_ones((batch_size, input_img_h, input_img_w)) | |
for img_id in range(batch_size): | |
img_h, img_w, _ = img_metas[img_id]['img_shape'] | |
masks[img_id, :img_h, :img_w] = 0 | |
x = self.input_proj(x) | |
# interpolate masks to have the same spatial shape with x | |
masks = F.interpolate( | |
masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1) | |
# position encoding | |
pos_embed = self.positional_encoding(masks) # [bs, embed_dim, h, w] | |
# outs_dec: [nb_dec, bs, num_query, embed_dim] | |
outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight, | |
pos_embed) | |
all_cls_scores = self.fc_cls(outs_dec) | |
all_bbox_preds = self.fc_reg(self.activate( | |
self.reg_ffn(outs_dec))).sigmoid() | |
return all_cls_scores, all_bbox_preds | |
def loss(self, | |
all_cls_scores_list, | |
all_bbox_preds_list, | |
gt_bboxes_list, | |
gt_labels_list, | |
img_metas, | |
gt_bboxes_ignore=None): | |
""""Loss function. | |
Only outputs from the last feature level are used for computing | |
losses by default. | |
Args: | |
all_cls_scores_list (list[Tensor]): Classification outputs | |
for each feature level. Each is a 4D-tensor with shape | |
[nb_dec, bs, num_query, cls_out_channels]. | |
all_bbox_preds_list (list[Tensor]): Sigmoid regression | |
outputs for each feature level. Each is a 4D-tensor with | |
normalized coordinate format (cx, cy, w, h) and shape | |
[nb_dec, bs, num_query, 4]. | |
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image | |
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels_list (list[Tensor]): Ground truth class indices for each | |
image with shape (num_gts, ). | |
img_metas (list[dict]): List of image meta information. | |
gt_bboxes_ignore (list[Tensor], optional): Bounding boxes | |
which can be ignored for each image. Default None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
# NOTE defaultly only the outputs from the last feature scale is used. | |
all_cls_scores = all_cls_scores_list[-1] | |
all_bbox_preds = all_bbox_preds_list[-1] | |
assert gt_bboxes_ignore is None, \ | |
'Only supports for gt_bboxes_ignore setting to None.' | |
num_dec_layers = len(all_cls_scores) | |
all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] | |
all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)] | |
all_gt_bboxes_ignore_list = [ | |
gt_bboxes_ignore for _ in range(num_dec_layers) | |
] | |
img_metas_list = [img_metas for _ in range(num_dec_layers)] | |
losses_cls, losses_bbox, losses_iou = multi_apply( | |
self.loss_single, all_cls_scores, all_bbox_preds, | |
all_gt_bboxes_list, all_gt_labels_list, img_metas_list, | |
all_gt_bboxes_ignore_list) | |
loss_dict = dict() | |
# loss from the last decoder layer | |
loss_dict['loss_cls'] = losses_cls[-1] | |
loss_dict['loss_bbox'] = losses_bbox[-1] | |
loss_dict['loss_iou'] = losses_iou[-1] | |
# loss from other decoder layers | |
num_dec_layer = 0 | |
for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1], | |
losses_bbox[:-1], | |
losses_iou[:-1]): | |
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i | |
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i | |
loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i | |
num_dec_layer += 1 | |
return loss_dict | |
def loss_single(self, | |
cls_scores, | |
bbox_preds, | |
gt_bboxes_list, | |
gt_labels_list, | |
img_metas, | |
gt_bboxes_ignore_list=None): | |
""""Loss function for outputs from a single decoder layer of a single | |
feature level. | |
Args: | |
cls_scores (Tensor): Box score logits from a single decoder layer | |
for all images. Shape [bs, num_query, cls_out_channels]. | |
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer | |
for all images, with normalized coordinate (cx, cy, w, h) and | |
shape [bs, num_query, 4]. | |
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image | |
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels_list (list[Tensor]): Ground truth class indices for each | |
image with shape (num_gts, ). | |
img_metas (list[dict]): List of image meta information. | |
gt_bboxes_ignore_list (list[Tensor], optional): Bounding | |
boxes which can be ignored for each image. Default None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components for outputs from | |
a single decoder layer. | |
""" | |
num_imgs = cls_scores.size(0) | |
cls_scores_list = [cls_scores[i] for i in range(num_imgs)] | |
bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)] | |
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list, | |
gt_bboxes_list, gt_labels_list, | |
img_metas, gt_bboxes_ignore_list) | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
num_total_pos, num_total_neg) = cls_reg_targets | |
labels = torch.cat(labels_list, 0) | |
label_weights = torch.cat(label_weights_list, 0) | |
bbox_targets = torch.cat(bbox_targets_list, 0) | |
bbox_weights = torch.cat(bbox_weights_list, 0) | |
# classification loss | |
cls_scores = cls_scores.reshape(-1, self.cls_out_channels) | |
# construct weighted avg_factor to match with the official DETR repo | |
cls_avg_factor = num_total_pos * 1.0 + \ | |
num_total_neg * self.bg_cls_weight | |
if self.sync_cls_avg_factor: | |
cls_avg_factor = reduce_mean( | |
cls_scores.new_tensor([cls_avg_factor])) | |
cls_avg_factor = max(cls_avg_factor, 1) | |
loss_cls = self.loss_cls( | |
cls_scores, labels, label_weights, avg_factor=cls_avg_factor) | |
# Compute the average number of gt boxes across all gpus, for | |
# normalization purposes | |
num_total_pos = loss_cls.new_tensor([num_total_pos]) | |
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() | |
# construct factors used for rescale bboxes | |
factors = [] | |
for img_meta, bbox_pred in zip(img_metas, bbox_preds): | |
img_h, img_w, _ = img_meta['img_shape'] | |
factor = bbox_pred.new_tensor([img_w, img_h, img_w, | |
img_h]).unsqueeze(0).repeat( | |
bbox_pred.size(0), 1) | |
factors.append(factor) | |
factors = torch.cat(factors, 0) | |
# DETR regress the relative position of boxes (cxcywh) in the image, | |
# thus the learning target is normalized by the image size. So here | |
# we need to re-scale them for calculating IoU loss | |
bbox_preds = bbox_preds.reshape(-1, 4) | |
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors | |
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors | |
# regression IoU loss, defaultly GIoU loss | |
loss_iou = self.loss_iou( | |
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) | |
# regression L1 loss | |
loss_bbox = self.loss_bbox( | |
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) | |
return loss_cls, loss_bbox, loss_iou | |
def get_targets(self, | |
cls_scores_list, | |
bbox_preds_list, | |
gt_bboxes_list, | |
gt_labels_list, | |
img_metas, | |
gt_bboxes_ignore_list=None): | |
""""Compute regression and classification targets for a batch image. | |
Outputs from a single decoder layer of a single feature level are used. | |
Args: | |
cls_scores_list (list[Tensor]): Box score logits from a single | |
decoder layer for each image with shape [num_query, | |
cls_out_channels]. | |
bbox_preds_list (list[Tensor]): Sigmoid outputs from a single | |
decoder layer for each image, with normalized coordinate | |
(cx, cy, w, h) and shape [num_query, 4]. | |
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image | |
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels_list (list[Tensor]): Ground truth class indices for each | |
image with shape (num_gts, ). | |
img_metas (list[dict]): List of image meta information. | |
gt_bboxes_ignore_list (list[Tensor], optional): Bounding | |
boxes which can be ignored for each image. Default None. | |
Returns: | |
tuple: a tuple containing the following targets. | |
- labels_list (list[Tensor]): Labels for all images. | |
- label_weights_list (list[Tensor]): Label weights for all \ | |
images. | |
- bbox_targets_list (list[Tensor]): BBox targets for all \ | |
images. | |
- bbox_weights_list (list[Tensor]): BBox weights for all \ | |
images. | |
- num_total_pos (int): Number of positive samples in all \ | |
images. | |
- num_total_neg (int): Number of negative samples in all \ | |
images. | |
""" | |
assert gt_bboxes_ignore_list is None, \ | |
'Only supports for gt_bboxes_ignore setting to None.' | |
num_imgs = len(cls_scores_list) | |
gt_bboxes_ignore_list = [ | |
gt_bboxes_ignore_list for _ in range(num_imgs) | |
] | |
(labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, pos_inds_list, neg_inds_list) = multi_apply( | |
self._get_target_single, cls_scores_list, bbox_preds_list, | |
gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list) | |
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) | |
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) | |
return (labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, num_total_pos, num_total_neg) | |
def _get_target_single(self, | |
cls_score, | |
bbox_pred, | |
gt_bboxes, | |
gt_labels, | |
img_meta, | |
gt_bboxes_ignore=None): | |
""""Compute regression and classification targets for one image. | |
Outputs from a single decoder layer of a single feature level are used. | |
Args: | |
cls_score (Tensor): Box score logits from a single decoder layer | |
for one image. Shape [num_query, cls_out_channels]. | |
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer | |
for one image, with normalized coordinate (cx, cy, w, h) and | |
shape [num_query, 4]. | |
gt_bboxes (Tensor): Ground truth bboxes for one image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (Tensor): Ground truth class indices for one image | |
with shape (num_gts, ). | |
img_meta (dict): Meta information for one image. | |
gt_bboxes_ignore (Tensor, optional): Bounding boxes | |
which can be ignored. Default None. | |
Returns: | |
tuple[Tensor]: a tuple containing the following for one image. | |
- labels (Tensor): Labels of each image. | |
- label_weights (Tensor]): Label weights of each image. | |
- bbox_targets (Tensor): BBox targets of each image. | |
- bbox_weights (Tensor): BBox weights of each image. | |
- pos_inds (Tensor): Sampled positive indices for each image. | |
- neg_inds (Tensor): Sampled negative indices for each image. | |
""" | |
num_bboxes = bbox_pred.size(0) | |
# assigner and sampler | |
assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes, | |
gt_labels, img_meta, | |
gt_bboxes_ignore) | |
sampling_result = self.sampler.sample(assign_result, bbox_pred, | |
gt_bboxes) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
# label targets | |
labels = gt_bboxes.new_full((num_bboxes, ), | |
self.num_classes, | |
dtype=torch.long) | |
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] | |
label_weights = gt_bboxes.new_ones(num_bboxes) | |
# bbox targets | |
bbox_targets = torch.zeros_like(bbox_pred) | |
bbox_weights = torch.zeros_like(bbox_pred) | |
bbox_weights[pos_inds] = 1.0 | |
img_h, img_w, _ = img_meta['img_shape'] | |
# DETR regress the relative position of boxes (cxcywh) in the image. | |
# Thus the learning target should be normalized by the image size, also | |
# the box format should be converted from defaultly x1y1x2y2 to cxcywh. | |
factor = bbox_pred.new_tensor([img_w, img_h, img_w, | |
img_h]).unsqueeze(0) | |
pos_gt_bboxes_normalized = sampling_result.pos_gt_bboxes / factor | |
pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized) | |
bbox_targets[pos_inds] = pos_gt_bboxes_targets | |
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, | |
neg_inds) | |
# over-write because img_metas are needed as inputs for bbox_head. | |
def forward_train(self, | |
x, | |
img_metas, | |
gt_bboxes, | |
gt_labels=None, | |
gt_bboxes_ignore=None, | |
proposal_cfg=None, | |
**kwargs): | |
"""Forward function for training mode. | |
Args: | |
x (list[Tensor]): Features from backbone. | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes (Tensor): Ground truth bboxes of the image, | |
shape (num_gts, 4). | |
gt_labels (Tensor): Ground truth labels of each box, | |
shape (num_gts,). | |
gt_bboxes_ignore (Tensor): Ground truth bboxes to be | |
ignored, shape (num_ignored_gts, 4). | |
proposal_cfg (mmcv.Config): Test / postprocessing configuration, | |
if None, test_cfg would be used. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
assert proposal_cfg is None, '"proposal_cfg" must be None' | |
outs = self(x, img_metas) | |
if gt_labels is None: | |
loss_inputs = outs + (gt_bboxes, img_metas) | |
else: | |
loss_inputs = outs + (gt_bboxes, gt_labels, img_metas) | |
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) | |
return losses | |
def get_bboxes(self, | |
all_cls_scores_list, | |
all_bbox_preds_list, | |
img_metas, | |
rescale=False): | |
"""Transform network outputs for a batch into bbox predictions. | |
Args: | |
all_cls_scores_list (list[Tensor]): Classification outputs | |
for each feature level. Each is a 4D-tensor with shape | |
[nb_dec, bs, num_query, cls_out_channels]. | |
all_bbox_preds_list (list[Tensor]): Sigmoid regression | |
outputs for each feature level. Each is a 4D-tensor with | |
normalized coordinate format (cx, cy, w, h) and shape | |
[nb_dec, bs, num_query, 4]. | |
img_metas (list[dict]): Meta information of each image. | |
rescale (bool, optional): If True, return boxes in original | |
image space. Default False. | |
Returns: | |
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ | |
The first item is an (n, 5) tensor, where the first 4 columns \ | |
are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ | |
5-th column is a score between 0 and 1. The second item is a \ | |
(n,) tensor where each item is the predicted class label of \ | |
the corresponding box. | |
""" | |
# NOTE defaultly only using outputs from the last feature level, | |
# and only the outputs from the last decoder layer is used. | |
cls_scores = all_cls_scores_list[-1][-1] | |
bbox_preds = all_bbox_preds_list[-1][-1] | |
result_list = [] | |
for img_id in range(len(img_metas)): | |
cls_score = cls_scores[img_id] | |
bbox_pred = bbox_preds[img_id] | |
img_shape = img_metas[img_id]['img_shape'] | |
scale_factor = img_metas[img_id]['scale_factor'] | |
proposals = self._get_bboxes_single(cls_score, bbox_pred, | |
img_shape, scale_factor, | |
rescale) | |
result_list.append(proposals) | |
return result_list | |
def _get_bboxes_single(self, | |
cls_score, | |
bbox_pred, | |
img_shape, | |
scale_factor, | |
rescale=False): | |
"""Transform outputs from the last decoder layer into bbox predictions | |
for each image. | |
Args: | |
cls_score (Tensor): Box score logits from the last decoder layer | |
for each image. Shape [num_query, cls_out_channels]. | |
bbox_pred (Tensor): Sigmoid outputs from the last decoder layer | |
for each image, with coordinate format (cx, cy, w, h) and | |
shape [num_query, 4]. | |
img_shape (tuple[int]): Shape of input image, (height, width, 3). | |
scale_factor (ndarray, optional): Scale factor of the image arange | |
as (w_scale, h_scale, w_scale, h_scale). | |
rescale (bool, optional): If True, return boxes in original image | |
space. Default False. | |
Returns: | |
tuple[Tensor]: Results of detected bboxes and labels. | |
- det_bboxes: Predicted bboxes with shape [num_query, 5], \ | |
where the first 4 columns are bounding box positions \ | |
(tl_x, tl_y, br_x, br_y) and the 5-th column are scores \ | |
between 0 and 1. | |
- det_labels: Predicted labels of the corresponding box with \ | |
shape [num_query]. | |
""" | |
assert len(cls_score) == len(bbox_pred) | |
max_per_img = self.test_cfg.get('max_per_img', self.num_query) | |
# exclude background | |
if self.loss_cls.use_sigmoid: | |
cls_score = cls_score.sigmoid() | |
scores, indexes = cls_score.view(-1).topk(max_per_img) | |
det_labels = indexes % self.num_classes | |
bbox_index = indexes // self.num_classes | |
bbox_pred = bbox_pred[bbox_index] | |
else: | |
scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1) | |
scores, bbox_index = scores.topk(max_per_img) | |
bbox_pred = bbox_pred[bbox_index] | |
det_labels = det_labels[bbox_index] | |
det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred) | |
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1] | |
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0] | |
det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1]) | |
det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0]) | |
if rescale: | |
det_bboxes /= det_bboxes.new_tensor(scale_factor) | |
det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(1)), -1) | |
return det_bboxes, det_labels | |
def simple_test_bboxes(self, feats, img_metas, rescale=False): | |
"""Test det bboxes without test-time augmentation. | |
Args: | |
feats (tuple[torch.Tensor]): Multi-level features from the | |
upstream network, each is a 4D-tensor. | |
img_metas (list[dict]): List of image information. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. | |
The first item is ``bboxes`` with shape (n, 5), | |
where 5 represent (tl_x, tl_y, br_x, br_y, score). | |
The shape of the second tensor in the tuple is ``labels`` | |
with shape (n,) | |
""" | |
# forward of this head requires img_metas | |
outs = self.forward(feats, img_metas) | |
results_list = self.get_bboxes(*outs, img_metas, rescale=rescale) | |
return results_list | |
def forward_onnx(self, feats, img_metas): | |
"""Forward function for exporting to ONNX. | |
Over-write `forward` because: `masks` is directly created with | |
zero (valid position tag) and has the same spatial size as `x`. | |
Thus the construction of `masks` is different from that in `forward`. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
img_metas (list[dict]): List of image information. | |
Returns: | |
tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels. | |
- all_cls_scores_list (list[Tensor]): Classification scores \ | |
for each scale level. Each is a 4D-tensor with shape \ | |
[nb_dec, bs, num_query, cls_out_channels]. Note \ | |
`cls_out_channels` should includes background. | |
- all_bbox_preds_list (list[Tensor]): Sigmoid regression \ | |
outputs for each scale level. Each is a 4D-tensor with \ | |
normalized coordinate format (cx, cy, w, h) and shape \ | |
[nb_dec, bs, num_query, 4]. | |
""" | |
num_levels = len(feats) | |
img_metas_list = [img_metas for _ in range(num_levels)] | |
return multi_apply(self.forward_single_onnx, feats, img_metas_list) | |
def forward_single_onnx(self, x, img_metas): | |
""""Forward function for a single feature level with ONNX exportation. | |
Args: | |
x (Tensor): Input feature from backbone's single stage, shape | |
[bs, c, h, w]. | |
img_metas (list[dict]): List of image information. | |
Returns: | |
all_cls_scores (Tensor): Outputs from the classification head, | |
shape [nb_dec, bs, num_query, cls_out_channels]. Note | |
cls_out_channels should includes background. | |
all_bbox_preds (Tensor): Sigmoid outputs from the regression | |
head with normalized coordinate format (cx, cy, w, h). | |
Shape [nb_dec, bs, num_query, 4]. | |
""" | |
# Note `img_shape` is not dynamically traceable to ONNX, | |
# since the related augmentation was done with numpy under | |
# CPU. Thus `masks` is directly created with zeros (valid tag) | |
# and the same spatial shape as `x`. | |
# The difference between torch and exported ONNX model may be | |
# ignored, since the same performance is achieved (e.g. | |
# 40.1 vs 40.1 for DETR) | |
batch_size = x.size(0) | |
h, w = x.size()[-2:] | |
masks = x.new_zeros((batch_size, h, w)) # [B,h,w] | |
x = self.input_proj(x) | |
# interpolate masks to have the same spatial shape with x | |
masks = F.interpolate( | |
masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1) | |
pos_embed = self.positional_encoding(masks) | |
outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight, | |
pos_embed) | |
all_cls_scores = self.fc_cls(outs_dec) | |
all_bbox_preds = self.fc_reg(self.activate( | |
self.reg_ffn(outs_dec))).sigmoid() | |
return all_cls_scores, all_bbox_preds | |
def onnx_export(self, all_cls_scores_list, all_bbox_preds_list, img_metas): | |
"""Transform network outputs into bbox predictions, with ONNX | |
exportation. | |
Args: | |
all_cls_scores_list (list[Tensor]): Classification outputs | |
for each feature level. Each is a 4D-tensor with shape | |
[nb_dec, bs, num_query, cls_out_channels]. | |
all_bbox_preds_list (list[Tensor]): Sigmoid regression | |
outputs for each feature level. Each is a 4D-tensor with | |
normalized coordinate format (cx, cy, w, h) and shape | |
[nb_dec, bs, num_query, 4]. | |
img_metas (list[dict]): Meta information of each image. | |
Returns: | |
tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] | |
and class labels of shape [N, num_det]. | |
""" | |
assert len(img_metas) == 1, \ | |
'Only support one input image while in exporting to ONNX' | |
cls_scores = all_cls_scores_list[-1][-1] | |
bbox_preds = all_bbox_preds_list[-1][-1] | |
# Note `img_shape` is not dynamically traceable to ONNX, | |
# here `img_shape_for_onnx` (padded shape of image tensor) | |
# is used. | |
img_shape = img_metas[0]['img_shape_for_onnx'] | |
max_per_img = self.test_cfg.get('max_per_img', self.num_query) | |
batch_size = cls_scores.size(0) | |
# `batch_index_offset` is used for the gather of concatenated tensor | |
batch_index_offset = torch.arange(batch_size).to( | |
cls_scores.device) * max_per_img | |
batch_index_offset = batch_index_offset.unsqueeze(1).expand( | |
batch_size, max_per_img) | |
# supports dynamical batch inference | |
if self.loss_cls.use_sigmoid: | |
cls_scores = cls_scores.sigmoid() | |
scores, indexes = cls_scores.view(batch_size, -1).topk( | |
max_per_img, dim=1) | |
det_labels = indexes % self.num_classes | |
bbox_index = indexes // self.num_classes | |
bbox_index = (bbox_index + batch_index_offset).view(-1) | |
bbox_preds = bbox_preds.view(-1, 4)[bbox_index] | |
bbox_preds = bbox_preds.view(batch_size, -1, 4) | |
else: | |
scores, det_labels = F.softmax( | |
cls_scores, dim=-1)[..., :-1].max(-1) | |
scores, bbox_index = scores.topk(max_per_img, dim=1) | |
bbox_index = (bbox_index + batch_index_offset).view(-1) | |
bbox_preds = bbox_preds.view(-1, 4)[bbox_index] | |
det_labels = det_labels.view(-1)[bbox_index] | |
bbox_preds = bbox_preds.view(batch_size, -1, 4) | |
det_labels = det_labels.view(batch_size, -1) | |
det_bboxes = bbox_cxcywh_to_xyxy(bbox_preds) | |
# use `img_shape_tensor` for dynamically exporting to ONNX | |
img_shape_tensor = img_shape.flip(0).repeat(2) # [w,h,w,h] | |
img_shape_tensor = img_shape_tensor.unsqueeze(0).unsqueeze(0).expand( | |
batch_size, det_bboxes.size(1), 4) | |
det_bboxes = det_bboxes * img_shape_tensor | |
# dynamically clip bboxes | |
x1, y1, x2, y2 = det_bboxes.split((1, 1, 1, 1), dim=-1) | |
from mmdet.core.export import dynamic_clip_for_onnx | |
x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, img_shape) | |
det_bboxes = torch.cat([x1, y1, x2, y2], dim=-1) | |
det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(-1)), -1) | |
return det_bboxes, det_labels | |