Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmcv.runner import BaseModule, ModuleList, force_fp32 | |
from mmdet.core import build_sampler, fast_nms, images_to_levels, multi_apply | |
from mmdet.core.utils import select_single_mlvl | |
from ..builder import HEADS, build_loss | |
from .anchor_head import AnchorHead | |
class YOLACTHead(AnchorHead): | |
"""YOLACT box head used in https://arxiv.org/abs/1904.02689. | |
Note that YOLACT head is a light version of RetinaNet head. | |
Four differences are described as follows: | |
1. YOLACT box head has three-times fewer anchors. | |
2. YOLACT box head shares the convs for box and cls branches. | |
3. YOLACT box head uses OHEM instead of Focal loss. | |
4. YOLACT box head predicts a set of mask coefficients for each box. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
anchor_generator (dict): Config dict for anchor generator | |
loss_cls (dict): Config of classification loss. | |
loss_bbox (dict): Config of localization loss. | |
num_head_convs (int): Number of the conv layers shared by | |
box and cls branches. | |
num_protos (int): Number of the mask coefficients. | |
use_ohem (bool): If true, ``loss_single_OHEM`` will be used for | |
cls loss calculation. If false, ``loss_single`` will be used. | |
conv_cfg (dict): Dictionary to construct and config conv layer. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
num_classes, | |
in_channels, | |
anchor_generator=dict( | |
type='AnchorGenerator', | |
octave_base_scale=3, | |
scales_per_octave=1, | |
ratios=[0.5, 1.0, 2.0], | |
strides=[8, 16, 32, 64, 128]), | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=False, | |
reduction='none', | |
loss_weight=1.0), | |
loss_bbox=dict( | |
type='SmoothL1Loss', beta=1.0, loss_weight=1.5), | |
num_head_convs=1, | |
num_protos=32, | |
use_ohem=True, | |
conv_cfg=None, | |
norm_cfg=None, | |
init_cfg=dict( | |
type='Xavier', | |
distribution='uniform', | |
bias=0, | |
layer='Conv2d'), | |
**kwargs): | |
self.num_head_convs = num_head_convs | |
self.num_protos = num_protos | |
self.use_ohem = use_ohem | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
super(YOLACTHead, self).__init__( | |
num_classes, | |
in_channels, | |
loss_cls=loss_cls, | |
loss_bbox=loss_bbox, | |
anchor_generator=anchor_generator, | |
init_cfg=init_cfg, | |
**kwargs) | |
if self.use_ohem: | |
sampler_cfg = dict(type='PseudoSampler') | |
self.sampler = build_sampler(sampler_cfg, context=self) | |
self.sampling = False | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.head_convs = ModuleList() | |
for i in range(self.num_head_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.head_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.conv_cls = nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * self.cls_out_channels, | |
3, | |
padding=1) | |
self.conv_reg = nn.Conv2d( | |
self.feat_channels, self.num_base_priors * 4, 3, padding=1) | |
self.conv_coeff = nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * self.num_protos, | |
3, | |
padding=1) | |
def forward_single(self, x): | |
"""Forward feature of a single scale level. | |
Args: | |
x (Tensor): Features of a single scale level. | |
Returns: | |
tuple: | |
cls_score (Tensor): Cls scores for a single scale level \ | |
the channels number is num_anchors * num_classes. | |
bbox_pred (Tensor): Box energies / deltas for a single scale \ | |
level, the channels number is num_anchors * 4. | |
coeff_pred (Tensor): Mask coefficients for a single scale \ | |
level, the channels number is num_anchors * num_protos. | |
""" | |
for head_conv in self.head_convs: | |
x = head_conv(x) | |
cls_score = self.conv_cls(x) | |
bbox_pred = self.conv_reg(x) | |
coeff_pred = self.conv_coeff(x).tanh() | |
return cls_score, bbox_pred, coeff_pred | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""A combination of the func:``AnchorHead.loss`` and | |
func:``SSDHead.loss``. | |
When ``self.use_ohem == True``, it functions like ``SSDHead.loss``, | |
otherwise, it follows ``AnchorHead.loss``. Besides, it additionally | |
returns ``sampling_results``. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): Class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding | |
boxes can be ignored when computing the loss. Default: None | |
Returns: | |
tuple: | |
dict[str, Tensor]: A dictionary of loss components. | |
List[:obj:``SamplingResult``]: Sampler results for each image. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, img_metas, device=device) | |
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes, | |
img_metas, | |
gt_bboxes_ignore_list=gt_bboxes_ignore, | |
gt_labels_list=gt_labels, | |
label_channels=label_channels, | |
unmap_outputs=not self.use_ohem, | |
return_sampling_results=True) | |
if cls_reg_targets is None: | |
return None | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
num_total_pos, num_total_neg, sampling_results) = cls_reg_targets | |
if self.use_ohem: | |
num_images = len(img_metas) | |
all_cls_scores = torch.cat([ | |
s.permute(0, 2, 3, 1).reshape( | |
num_images, -1, self.cls_out_channels) for s in cls_scores | |
], 1) | |
all_labels = torch.cat(labels_list, -1).view(num_images, -1) | |
all_label_weights = torch.cat(label_weights_list, | |
-1).view(num_images, -1) | |
all_bbox_preds = torch.cat([ | |
b.permute(0, 2, 3, 1).reshape(num_images, -1, 4) | |
for b in bbox_preds | |
], -2) | |
all_bbox_targets = torch.cat(bbox_targets_list, | |
-2).view(num_images, -1, 4) | |
all_bbox_weights = torch.cat(bbox_weights_list, | |
-2).view(num_images, -1, 4) | |
# concat all level anchors to a single tensor | |
all_anchors = [] | |
for i in range(num_images): | |
all_anchors.append(torch.cat(anchor_list[i])) | |
# check NaN and Inf | |
assert torch.isfinite(all_cls_scores).all().item(), \ | |
'classification scores become infinite or NaN!' | |
assert torch.isfinite(all_bbox_preds).all().item(), \ | |
'bbox predications become infinite or NaN!' | |
losses_cls, losses_bbox = multi_apply( | |
self.loss_single_OHEM, | |
all_cls_scores, | |
all_bbox_preds, | |
all_anchors, | |
all_labels, | |
all_label_weights, | |
all_bbox_targets, | |
all_bbox_weights, | |
num_total_samples=num_total_pos) | |
else: | |
num_total_samples = ( | |
num_total_pos + | |
num_total_neg if self.sampling else num_total_pos) | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
# concat all level anchors and flags to a single tensor | |
concat_anchor_list = [] | |
for i in range(len(anchor_list)): | |
concat_anchor_list.append(torch.cat(anchor_list[i])) | |
all_anchor_list = images_to_levels(concat_anchor_list, | |
num_level_anchors) | |
losses_cls, losses_bbox = multi_apply( | |
self.loss_single, | |
cls_scores, | |
bbox_preds, | |
all_anchor_list, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
bbox_weights_list, | |
num_total_samples=num_total_samples) | |
return dict( | |
loss_cls=losses_cls, loss_bbox=losses_bbox), sampling_results | |
def loss_single_OHEM(self, cls_score, bbox_pred, anchors, labels, | |
label_weights, bbox_targets, bbox_weights, | |
num_total_samples): | |
""""See func:``SSDHead.loss``.""" | |
loss_cls_all = self.loss_cls(cls_score, labels, label_weights) | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero( | |
as_tuple=False).reshape(-1) | |
neg_inds = (labels == self.num_classes).nonzero( | |
as_tuple=False).view(-1) | |
num_pos_samples = pos_inds.size(0) | |
if num_pos_samples == 0: | |
num_neg_samples = neg_inds.size(0) | |
else: | |
num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples | |
if num_neg_samples > neg_inds.size(0): | |
num_neg_samples = neg_inds.size(0) | |
topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples) | |
loss_cls_pos = loss_cls_all[pos_inds].sum() | |
loss_cls_neg = topk_loss_cls_neg.sum() | |
loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples | |
if self.reg_decoded_bbox: | |
# When the regression loss (e.g. `IouLoss`, `GIouLoss`) | |
# is applied directly on the decoded bounding boxes, it | |
# decodes the already encoded coordinates to absolute format. | |
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) | |
loss_bbox = self.loss_bbox( | |
bbox_pred, | |
bbox_targets, | |
bbox_weights, | |
avg_factor=num_total_samples) | |
return loss_cls[None], loss_bbox | |
def get_bboxes(self, | |
cls_scores, | |
bbox_preds, | |
coeff_preds, | |
img_metas, | |
cfg=None, | |
rescale=False): | |
""""Similar to func:``AnchorHead.get_bboxes``, but additionally | |
processes coeff_preds. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
with shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
coeff_preds (list[Tensor]): Mask coefficients for each scale | |
level with shape (N, num_anchors * num_protos, H, W) | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
cfg (mmcv.Config | None): Test / postprocessing configuration, | |
if None, test_cfg would be used | |
rescale (bool): If True, return boxes in original image space. | |
Default: False. | |
Returns: | |
list[tuple[Tensor, Tensor, Tensor]]: Each item in result_list is | |
a 3-tuple. The first item is an (n, 5) tensor, where the | |
first 4 columns are bounding box positions | |
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score | |
between 0 and 1. The second item is an (n,) tensor where each | |
item is the predicted class label of the corresponding box. | |
The third item is an (n, num_protos) tensor where each item | |
is the predicted mask coefficients of instance inside the | |
corresponding box. | |
""" | |
assert len(cls_scores) == len(bbox_preds) | |
num_levels = len(cls_scores) | |
device = cls_scores[0].device | |
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] | |
mlvl_anchors = self.prior_generator.grid_priors( | |
featmap_sizes, device=device) | |
det_bboxes = [] | |
det_labels = [] | |
det_coeffs = [] | |
for img_id in range(len(img_metas)): | |
cls_score_list = select_single_mlvl(cls_scores, img_id) | |
bbox_pred_list = select_single_mlvl(bbox_preds, img_id) | |
coeff_pred_list = select_single_mlvl(coeff_preds, img_id) | |
img_shape = img_metas[img_id]['img_shape'] | |
scale_factor = img_metas[img_id]['scale_factor'] | |
bbox_res = self._get_bboxes_single(cls_score_list, bbox_pred_list, | |
coeff_pred_list, mlvl_anchors, | |
img_shape, scale_factor, cfg, | |
rescale) | |
det_bboxes.append(bbox_res[0]) | |
det_labels.append(bbox_res[1]) | |
det_coeffs.append(bbox_res[2]) | |
return det_bboxes, det_labels, det_coeffs | |
def _get_bboxes_single(self, | |
cls_score_list, | |
bbox_pred_list, | |
coeff_preds_list, | |
mlvl_anchors, | |
img_shape, | |
scale_factor, | |
cfg, | |
rescale=False): | |
""""Similar to func:``AnchorHead._get_bboxes_single``, but additionally | |
processes coeff_preds_list and uses fast NMS instead of traditional | |
NMS. | |
Args: | |
cls_score_list (list[Tensor]): Box scores for a single scale level | |
Has shape (num_anchors * num_classes, H, W). | |
bbox_pred_list (list[Tensor]): Box energies / deltas for a single | |
scale level with shape (num_anchors * 4, H, W). | |
coeff_preds_list (list[Tensor]): Mask coefficients for a single | |
scale level with shape (num_anchors * num_protos, H, W). | |
mlvl_anchors (list[Tensor]): Box reference for a single scale level | |
with shape (num_total_anchors, 4). | |
img_shape (tuple[int]): Shape of the input image, | |
(height, width, 3). | |
scale_factor (ndarray): Scale factor of the image arange as | |
(w_scale, h_scale, w_scale, h_scale). | |
cfg (mmcv.Config): Test / postprocessing configuration, | |
if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Returns: | |
tuple[Tensor, Tensor, Tensor]: The first item is an (n, 5) tensor, | |
where the first 4 columns are bounding box positions | |
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score between | |
0 and 1. The second item is an (n,) tensor where each item is | |
the predicted class label of the corresponding box. The third | |
item is an (n, num_protos) tensor where each item is the | |
predicted mask coefficients of instance inside the | |
corresponding box. | |
""" | |
cfg = self.test_cfg if cfg is None else cfg | |
assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors) | |
nms_pre = cfg.get('nms_pre', -1) | |
mlvl_bboxes = [] | |
mlvl_scores = [] | |
mlvl_coeffs = [] | |
for cls_score, bbox_pred, coeff_pred, anchors in \ | |
zip(cls_score_list, bbox_pred_list, | |
coeff_preds_list, mlvl_anchors): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
cls_score = cls_score.permute(1, 2, | |
0).reshape(-1, self.cls_out_channels) | |
if self.use_sigmoid_cls: | |
scores = cls_score.sigmoid() | |
else: | |
scores = cls_score.softmax(-1) | |
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) | |
coeff_pred = coeff_pred.permute(1, 2, | |
0).reshape(-1, self.num_protos) | |
if 0 < nms_pre < scores.shape[0]: | |
# Get maximum scores for foreground classes. | |
if self.use_sigmoid_cls: | |
max_scores, _ = scores.max(dim=1) | |
else: | |
# remind that we set FG labels to [0, num_class-1] | |
# since mmdet v2.0 | |
# BG cat_id: num_class | |
max_scores, _ = scores[:, :-1].max(dim=1) | |
_, topk_inds = max_scores.topk(nms_pre) | |
anchors = anchors[topk_inds, :] | |
bbox_pred = bbox_pred[topk_inds, :] | |
scores = scores[topk_inds, :] | |
coeff_pred = coeff_pred[topk_inds, :] | |
bboxes = self.bbox_coder.decode( | |
anchors, bbox_pred, max_shape=img_shape) | |
mlvl_bboxes.append(bboxes) | |
mlvl_scores.append(scores) | |
mlvl_coeffs.append(coeff_pred) | |
mlvl_bboxes = torch.cat(mlvl_bboxes) | |
if rescale: | |
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) | |
mlvl_scores = torch.cat(mlvl_scores) | |
mlvl_coeffs = torch.cat(mlvl_coeffs) | |
if self.use_sigmoid_cls: | |
# Add a dummy background class to the backend when using sigmoid | |
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0 | |
# BG cat_id: num_class | |
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) | |
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) | |
det_bboxes, det_labels, det_coeffs = fast_nms(mlvl_bboxes, mlvl_scores, | |
mlvl_coeffs, | |
cfg.score_thr, | |
cfg.iou_thr, cfg.top_k, | |
cfg.max_per_img) | |
return det_bboxes, det_labels, det_coeffs | |
class YOLACTSegmHead(BaseModule): | |
"""YOLACT segmentation head used in https://arxiv.org/abs/1904.02689. | |
Apply a semantic segmentation loss on feature space using layers that are | |
only evaluated during training to increase performance with no speed | |
penalty. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
num_classes (int): Number of categories excluding the background | |
category. | |
loss_segm (dict): Config of semantic segmentation loss. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
num_classes, | |
in_channels=256, | |
loss_segm=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=1.0), | |
init_cfg=dict( | |
type='Xavier', | |
distribution='uniform', | |
override=dict(name='segm_conv'))): | |
super(YOLACTSegmHead, self).__init__(init_cfg) | |
self.in_channels = in_channels | |
self.num_classes = num_classes | |
self.loss_segm = build_loss(loss_segm) | |
self._init_layers() | |
self.fp16_enabled = False | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
self.segm_conv = nn.Conv2d( | |
self.in_channels, self.num_classes, kernel_size=1) | |
def forward(self, x): | |
"""Forward feature from the upstream network. | |
Args: | |
x (Tensor): Feature from the upstream network, which is | |
a 4D-tensor. | |
Returns: | |
Tensor: Predicted semantic segmentation map with shape | |
(N, num_classes, H, W). | |
""" | |
return self.segm_conv(x) | |
def loss(self, segm_pred, gt_masks, gt_labels): | |
"""Compute loss of the head. | |
Args: | |
segm_pred (list[Tensor]): Predicted semantic segmentation map | |
with shape (N, num_classes, H, W). | |
gt_masks (list[Tensor]): Ground truth masks for each image with | |
the same shape of the input image. | |
gt_labels (list[Tensor]): Class indices corresponding to each box. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
loss_segm = [] | |
num_imgs, num_classes, mask_h, mask_w = segm_pred.size() | |
for idx in range(num_imgs): | |
cur_segm_pred = segm_pred[idx] | |
cur_gt_masks = gt_masks[idx].float() | |
cur_gt_labels = gt_labels[idx] | |
segm_targets = self.get_targets(cur_segm_pred, cur_gt_masks, | |
cur_gt_labels) | |
if segm_targets is None: | |
loss = self.loss_segm(cur_segm_pred, | |
torch.zeros_like(cur_segm_pred), | |
torch.zeros_like(cur_segm_pred)) | |
else: | |
loss = self.loss_segm( | |
cur_segm_pred, | |
segm_targets, | |
avg_factor=num_imgs * mask_h * mask_w) | |
loss_segm.append(loss) | |
return dict(loss_segm=loss_segm) | |
def get_targets(self, segm_pred, gt_masks, gt_labels): | |
"""Compute semantic segmentation targets for each image. | |
Args: | |
segm_pred (Tensor): Predicted semantic segmentation map | |
with shape (num_classes, H, W). | |
gt_masks (Tensor): Ground truth masks for each image with | |
the same shape of the input image. | |
gt_labels (Tensor): Class indices corresponding to each box. | |
Returns: | |
Tensor: Semantic segmentation targets with shape | |
(num_classes, H, W). | |
""" | |
if gt_masks.size(0) == 0: | |
return None | |
num_classes, mask_h, mask_w = segm_pred.size() | |
with torch.no_grad(): | |
downsampled_masks = F.interpolate( | |
gt_masks.unsqueeze(0), (mask_h, mask_w), | |
mode='bilinear', | |
align_corners=False).squeeze(0) | |
downsampled_masks = downsampled_masks.gt(0.5).float() | |
segm_targets = torch.zeros_like(segm_pred, requires_grad=False) | |
for obj_idx in range(downsampled_masks.size(0)): | |
segm_targets[gt_labels[obj_idx] - 1] = torch.max( | |
segm_targets[gt_labels[obj_idx] - 1], | |
downsampled_masks[obj_idx]) | |
return segm_targets | |
def simple_test(self, feats, img_metas, rescale=False): | |
"""Test function without test-time augmentation.""" | |
raise NotImplementedError( | |
'simple_test of YOLACTSegmHead is not implemented ' | |
'because this head is only evaluated during training') | |
class YOLACTProtonet(BaseModule): | |
"""YOLACT mask head used in https://arxiv.org/abs/1904.02689. | |
This head outputs the mask prototypes for YOLACT. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
proto_channels (tuple[int]): Output channels of protonet convs. | |
proto_kernel_sizes (tuple[int]): Kernel sizes of protonet convs. | |
include_last_relu (Bool): If keep the last relu of protonet. | |
num_protos (int): Number of prototypes. | |
num_classes (int): Number of categories excluding the background | |
category. | |
loss_mask_weight (float): Reweight the mask loss by this factor. | |
max_masks_to_train (int): Maximum number of masks to train for | |
each image. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
num_classes, | |
in_channels=256, | |
proto_channels=(256, 256, 256, None, 256, 32), | |
proto_kernel_sizes=(3, 3, 3, -2, 3, 1), | |
include_last_relu=True, | |
num_protos=32, | |
loss_mask_weight=1.0, | |
max_masks_to_train=100, | |
init_cfg=dict( | |
type='Xavier', | |
distribution='uniform', | |
override=dict(name='protonet'))): | |
super(YOLACTProtonet, self).__init__(init_cfg) | |
self.in_channels = in_channels | |
self.proto_channels = proto_channels | |
self.proto_kernel_sizes = proto_kernel_sizes | |
self.include_last_relu = include_last_relu | |
self.protonet = self._init_layers() | |
self.loss_mask_weight = loss_mask_weight | |
self.num_protos = num_protos | |
self.num_classes = num_classes | |
self.max_masks_to_train = max_masks_to_train | |
self.fp16_enabled = False | |
def _init_layers(self): | |
"""A helper function to take a config setting and turn it into a | |
network.""" | |
# Possible patterns: | |
# ( 256, 3) -> conv | |
# ( 256,-2) -> deconv | |
# (None,-2) -> bilinear interpolate | |
in_channels = self.in_channels | |
protonets = ModuleList() | |
for num_channels, kernel_size in zip(self.proto_channels, | |
self.proto_kernel_sizes): | |
if kernel_size > 0: | |
layer = nn.Conv2d( | |
in_channels, | |
num_channels, | |
kernel_size, | |
padding=kernel_size // 2) | |
else: | |
if num_channels is None: | |
layer = InterpolateModule( | |
scale_factor=-kernel_size, | |
mode='bilinear', | |
align_corners=False) | |
else: | |
layer = nn.ConvTranspose2d( | |
in_channels, | |
num_channels, | |
-kernel_size, | |
padding=kernel_size // 2) | |
protonets.append(layer) | |
protonets.append(nn.ReLU(inplace=True)) | |
in_channels = num_channels if num_channels is not None \ | |
else in_channels | |
if not self.include_last_relu: | |
protonets = protonets[:-1] | |
return nn.Sequential(*protonets) | |
def forward_dummy(self, x): | |
prototypes = self.protonet(x) | |
return prototypes | |
def forward(self, x, coeff_pred, bboxes, img_meta, sampling_results=None): | |
"""Forward feature from the upstream network to get prototypes and | |
linearly combine the prototypes, using masks coefficients, into | |
instance masks. Finally, crop the instance masks with given bboxes. | |
Args: | |
x (Tensor): Feature from the upstream network, which is | |
a 4D-tensor. | |
coeff_pred (list[Tensor]): Mask coefficients for each scale | |
level with shape (N, num_anchors * num_protos, H, W). | |
bboxes (list[Tensor]): Box used for cropping with shape | |
(N, num_anchors * 4, H, W). During training, they are | |
ground truth boxes. During testing, they are predicted | |
boxes. | |
img_meta (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
sampling_results (List[:obj:``SamplingResult``]): Sampler results | |
for each image. | |
Returns: | |
list[Tensor]: Predicted instance segmentation masks. | |
""" | |
prototypes = self.protonet(x) | |
prototypes = prototypes.permute(0, 2, 3, 1).contiguous() | |
num_imgs = x.size(0) | |
# The reason for not using self.training is that | |
# val workflow will have a dimension mismatch error. | |
# Note that this writing method is very tricky. | |
# Fix https://github.com/open-mmlab/mmdetection/issues/5978 | |
is_train_or_val_workflow = (coeff_pred[0].dim() == 4) | |
# Train or val workflow | |
if is_train_or_val_workflow: | |
coeff_pred_list = [] | |
for coeff_pred_per_level in coeff_pred: | |
coeff_pred_per_level = \ | |
coeff_pred_per_level.permute( | |
0, 2, 3, 1).reshape(num_imgs, -1, self.num_protos) | |
coeff_pred_list.append(coeff_pred_per_level) | |
coeff_pred = torch.cat(coeff_pred_list, dim=1) | |
mask_pred_list = [] | |
for idx in range(num_imgs): | |
cur_prototypes = prototypes[idx] | |
cur_coeff_pred = coeff_pred[idx] | |
cur_bboxes = bboxes[idx] | |
cur_img_meta = img_meta[idx] | |
# Testing state | |
if not is_train_or_val_workflow: | |
bboxes_for_cropping = cur_bboxes | |
else: | |
cur_sampling_results = sampling_results[idx] | |
pos_assigned_gt_inds = \ | |
cur_sampling_results.pos_assigned_gt_inds | |
bboxes_for_cropping = cur_bboxes[pos_assigned_gt_inds].clone() | |
pos_inds = cur_sampling_results.pos_inds | |
cur_coeff_pred = cur_coeff_pred[pos_inds] | |
# Linearly combine the prototypes with the mask coefficients | |
mask_pred = cur_prototypes @ cur_coeff_pred.t() | |
mask_pred = torch.sigmoid(mask_pred) | |
h, w = cur_img_meta['img_shape'][:2] | |
bboxes_for_cropping[:, 0] /= w | |
bboxes_for_cropping[:, 1] /= h | |
bboxes_for_cropping[:, 2] /= w | |
bboxes_for_cropping[:, 3] /= h | |
mask_pred = self.crop(mask_pred, bboxes_for_cropping) | |
mask_pred = mask_pred.permute(2, 0, 1).contiguous() | |
mask_pred_list.append(mask_pred) | |
return mask_pred_list | |
def loss(self, mask_pred, gt_masks, gt_bboxes, img_meta, sampling_results): | |
"""Compute loss of the head. | |
Args: | |
mask_pred (list[Tensor]): Predicted prototypes with shape | |
(num_classes, H, W). | |
gt_masks (list[Tensor]): Ground truth masks for each image with | |
the same shape of the input image. | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
img_meta (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
sampling_results (List[:obj:``SamplingResult``]): Sampler results | |
for each image. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
loss_mask = [] | |
num_imgs = len(mask_pred) | |
total_pos = 0 | |
for idx in range(num_imgs): | |
cur_mask_pred = mask_pred[idx] | |
cur_gt_masks = gt_masks[idx].float() | |
cur_gt_bboxes = gt_bboxes[idx] | |
cur_img_meta = img_meta[idx] | |
cur_sampling_results = sampling_results[idx] | |
pos_assigned_gt_inds = cur_sampling_results.pos_assigned_gt_inds | |
num_pos = pos_assigned_gt_inds.size(0) | |
# Since we're producing (near) full image masks, | |
# it'd take too much vram to backprop on every single mask. | |
# Thus we select only a subset. | |
if num_pos > self.max_masks_to_train: | |
perm = torch.randperm(num_pos) | |
select = perm[:self.max_masks_to_train] | |
cur_mask_pred = cur_mask_pred[select] | |
pos_assigned_gt_inds = pos_assigned_gt_inds[select] | |
num_pos = self.max_masks_to_train | |
total_pos += num_pos | |
gt_bboxes_for_reweight = cur_gt_bboxes[pos_assigned_gt_inds] | |
mask_targets = self.get_targets(cur_mask_pred, cur_gt_masks, | |
pos_assigned_gt_inds) | |
if num_pos == 0: | |
loss = cur_mask_pred.sum() * 0. | |
elif mask_targets is None: | |
loss = F.binary_cross_entropy(cur_mask_pred, | |
torch.zeros_like(cur_mask_pred), | |
torch.zeros_like(cur_mask_pred)) | |
else: | |
cur_mask_pred = torch.clamp(cur_mask_pred, 0, 1) | |
loss = F.binary_cross_entropy( | |
cur_mask_pred, mask_targets, | |
reduction='none') * self.loss_mask_weight | |
h, w = cur_img_meta['img_shape'][:2] | |
gt_bboxes_width = (gt_bboxes_for_reweight[:, 2] - | |
gt_bboxes_for_reweight[:, 0]) / w | |
gt_bboxes_height = (gt_bboxes_for_reweight[:, 3] - | |
gt_bboxes_for_reweight[:, 1]) / h | |
loss = loss.mean(dim=(1, | |
2)) / gt_bboxes_width / gt_bboxes_height | |
loss = torch.sum(loss) | |
loss_mask.append(loss) | |
if total_pos == 0: | |
total_pos += 1 # avoid nan | |
loss_mask = [x / total_pos for x in loss_mask] | |
return dict(loss_mask=loss_mask) | |
def get_targets(self, mask_pred, gt_masks, pos_assigned_gt_inds): | |
"""Compute instance segmentation targets for each image. | |
Args: | |
mask_pred (Tensor): Predicted prototypes with shape | |
(num_classes, H, W). | |
gt_masks (Tensor): Ground truth masks for each image with | |
the same shape of the input image. | |
pos_assigned_gt_inds (Tensor): GT indices of the corresponding | |
positive samples. | |
Returns: | |
Tensor: Instance segmentation targets with shape | |
(num_instances, H, W). | |
""" | |
if gt_masks.size(0) == 0: | |
return None | |
mask_h, mask_w = mask_pred.shape[-2:] | |
gt_masks = F.interpolate( | |
gt_masks.unsqueeze(0), (mask_h, mask_w), | |
mode='bilinear', | |
align_corners=False).squeeze(0) | |
gt_masks = gt_masks.gt(0.5).float() | |
mask_targets = gt_masks[pos_assigned_gt_inds] | |
return mask_targets | |
def get_seg_masks(self, mask_pred, label_pred, img_meta, rescale): | |
"""Resize, binarize, and format the instance mask predictions. | |
Args: | |
mask_pred (Tensor): shape (N, H, W). | |
label_pred (Tensor): shape (N, ). | |
img_meta (dict): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
rescale (bool): If rescale is False, then returned masks will | |
fit the scale of imgs[0]. | |
Returns: | |
list[ndarray]: Mask predictions grouped by their predicted classes. | |
""" | |
ori_shape = img_meta['ori_shape'] | |
scale_factor = img_meta['scale_factor'] | |
if rescale: | |
img_h, img_w = ori_shape[:2] | |
else: | |
img_h = np.round(ori_shape[0] * scale_factor[1]).astype(np.int32) | |
img_w = np.round(ori_shape[1] * scale_factor[0]).astype(np.int32) | |
cls_segms = [[] for _ in range(self.num_classes)] | |
if mask_pred.size(0) == 0: | |
return cls_segms | |
mask_pred = F.interpolate( | |
mask_pred.unsqueeze(0), (img_h, img_w), | |
mode='bilinear', | |
align_corners=False).squeeze(0) > 0.5 | |
mask_pred = mask_pred.cpu().numpy().astype(np.uint8) | |
for m, l in zip(mask_pred, label_pred): | |
cls_segms[l].append(m) | |
return cls_segms | |
def crop(self, masks, boxes, padding=1): | |
"""Crop predicted masks by zeroing out everything not in the predicted | |
bbox. | |
Args: | |
masks (Tensor): shape [H, W, N]. | |
boxes (Tensor): bbox coords in relative point form with | |
shape [N, 4]. | |
Return: | |
Tensor: The cropped masks. | |
""" | |
h, w, n = masks.size() | |
x1, x2 = self.sanitize_coordinates( | |
boxes[:, 0], boxes[:, 2], w, padding, cast=False) | |
y1, y2 = self.sanitize_coordinates( | |
boxes[:, 1], boxes[:, 3], h, padding, cast=False) | |
rows = torch.arange( | |
w, device=masks.device, dtype=x1.dtype).view(1, -1, | |
1).expand(h, w, n) | |
cols = torch.arange( | |
h, device=masks.device, dtype=x1.dtype).view(-1, 1, | |
1).expand(h, w, n) | |
masks_left = rows >= x1.view(1, 1, -1) | |
masks_right = rows < x2.view(1, 1, -1) | |
masks_up = cols >= y1.view(1, 1, -1) | |
masks_down = cols < y2.view(1, 1, -1) | |
crop_mask = masks_left * masks_right * masks_up * masks_down | |
return masks * crop_mask.float() | |
def sanitize_coordinates(self, x1, x2, img_size, padding=0, cast=True): | |
"""Sanitizes the input coordinates so that x1 < x2, x1 != x2, x1 >= 0, | |
and x2 <= image_size. Also converts from relative to absolute | |
coordinates and casts the results to long tensors. | |
Warning: this does things in-place behind the scenes so | |
copy if necessary. | |
Args: | |
_x1 (Tensor): shape (N, ). | |
_x2 (Tensor): shape (N, ). | |
img_size (int): Size of the input image. | |
padding (int): x1 >= padding, x2 <= image_size-padding. | |
cast (bool): If cast is false, the result won't be cast to longs. | |
Returns: | |
tuple: | |
x1 (Tensor): Sanitized _x1. | |
x2 (Tensor): Sanitized _x2. | |
""" | |
x1 = x1 * img_size | |
x2 = x2 * img_size | |
if cast: | |
x1 = x1.long() | |
x2 = x2.long() | |
x1 = torch.min(x1, x2) | |
x2 = torch.max(x1, x2) | |
x1 = torch.clamp(x1 - padding, min=0) | |
x2 = torch.clamp(x2 + padding, max=img_size) | |
return x1, x2 | |
def simple_test(self, | |
feats, | |
det_bboxes, | |
det_labels, | |
det_coeffs, | |
img_metas, | |
rescale=False): | |
"""Test function without test-time augmentation. | |
Args: | |
feats (tuple[torch.Tensor]): Multi-level features from the | |
upstream network, each is a 4D-tensor. | |
det_bboxes (list[Tensor]): BBox results of each image. each | |
element is (n, 5) tensor, where 5 represent | |
(tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. | |
det_labels (list[Tensor]): BBox results of each image. each | |
element is (n, ) tensor, each element represents the class | |
label of the corresponding box. | |
det_coeffs (list[Tensor]): BBox coefficient of each image. each | |
element is (n, m) tensor, m is vector length. | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[list]: encoded masks. The c-th item in the outer list | |
corresponds to the c-th class. Given the c-th outer list, the | |
i-th item in that inner list is the mask for the i-th box with | |
class label c. | |
""" | |
num_imgs = len(img_metas) | |
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) | |
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): | |
segm_results = [[[] for _ in range(self.num_classes)] | |
for _ in range(num_imgs)] | |
else: | |
# if det_bboxes is rescaled to the original image size, we need to | |
# rescale it back to the testing scale to obtain RoIs. | |
if rescale and not isinstance(scale_factors[0], float): | |
scale_factors = [ | |
torch.from_numpy(scale_factor).to(det_bboxes[0].device) | |
for scale_factor in scale_factors | |
] | |
_bboxes = [ | |
det_bboxes[i][:, :4] * | |
scale_factors[i] if rescale else det_bboxes[i][:, :4] | |
for i in range(len(det_bboxes)) | |
] | |
mask_preds = self.forward(feats[0], det_coeffs, _bboxes, img_metas) | |
# apply mask post-processing to each image individually | |
segm_results = [] | |
for i in range(num_imgs): | |
if det_bboxes[i].shape[0] == 0: | |
segm_results.append([[] for _ in range(self.num_classes)]) | |
else: | |
segm_result = self.get_seg_masks(mask_preds[i], | |
det_labels[i], | |
img_metas[i], rescale) | |
segm_results.append(segm_result) | |
return segm_results | |
class InterpolateModule(BaseModule): | |
"""This is a module version of F.interpolate. | |
Any arguments you give it just get passed along for the ride. | |
""" | |
def __init__(self, *args, init_cfg=None, **kwargs): | |
super().__init__(init_cfg) | |
self.args = args | |
self.kwargs = kwargs | |
def forward(self, x): | |
"""Forward features from the upstream network.""" | |
return F.interpolate(x, *self.args, **self.kwargs) | |