Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from collections.abc import Sequence | |
import mmcv | |
import numpy as np | |
import torch | |
from mmcv.parallel import DataContainer as DC | |
from ..builder import PIPELINES | |
def to_tensor(data): | |
"""Convert objects of various python types to :obj:`torch.Tensor`. | |
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, | |
:class:`Sequence`, :class:`int` and :class:`float`. | |
Args: | |
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to | |
be converted. | |
""" | |
if isinstance(data, torch.Tensor): | |
return data | |
elif isinstance(data, np.ndarray): | |
return torch.from_numpy(data) | |
elif isinstance(data, Sequence) and not mmcv.is_str(data): | |
return torch.tensor(data) | |
elif isinstance(data, int): | |
return torch.LongTensor([data]) | |
elif isinstance(data, float): | |
return torch.FloatTensor([data]) | |
else: | |
raise TypeError(f'type {type(data)} cannot be converted to tensor.') | |
class ToTensor: | |
"""Convert some results to :obj:`torch.Tensor` by given keys. | |
Args: | |
keys (Sequence[str]): Keys that need to be converted to Tensor. | |
""" | |
def __init__(self, keys): | |
self.keys = keys | |
def __call__(self, results): | |
"""Call function to convert data in results to :obj:`torch.Tensor`. | |
Args: | |
results (dict): Result dict contains the data to convert. | |
Returns: | |
dict: The result dict contains the data converted | |
to :obj:`torch.Tensor`. | |
""" | |
for key in self.keys: | |
results[key] = to_tensor(results[key]) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(keys={self.keys})' | |
class ImageToTensor: | |
"""Convert image to :obj:`torch.Tensor` by given keys. | |
The dimension order of input image is (H, W, C). The pipeline will convert | |
it to (C, H, W). If only 2 dimension (H, W) is given, the output would be | |
(1, H, W). | |
Args: | |
keys (Sequence[str]): Key of images to be converted to Tensor. | |
""" | |
def __init__(self, keys): | |
self.keys = keys | |
def __call__(self, results): | |
"""Call function to convert image in results to :obj:`torch.Tensor` and | |
permute the channel order. | |
Args: | |
results (dict): Result dict contains the image data to convert. | |
Returns: | |
dict: The result dict contains the image converted | |
to :obj:`torch.Tensor` and permuted to (C, H, W) order. | |
""" | |
for key in self.keys: | |
img = results[key] | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
results[key] = to_tensor(img).permute(2, 0, 1).contiguous() | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(keys={self.keys})' | |
class Transpose: | |
"""Transpose some results by given keys. | |
Args: | |
keys (Sequence[str]): Keys of results to be transposed. | |
order (Sequence[int]): Order of transpose. | |
""" | |
def __init__(self, keys, order): | |
self.keys = keys | |
self.order = order | |
def __call__(self, results): | |
"""Call function to transpose the channel order of data in results. | |
Args: | |
results (dict): Result dict contains the data to transpose. | |
Returns: | |
dict: The result dict contains the data transposed to \ | |
``self.order``. | |
""" | |
for key in self.keys: | |
results[key] = results[key].transpose(self.order) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + \ | |
f'(keys={self.keys}, order={self.order})' | |
class ToDataContainer: | |
"""Convert results to :obj:`mmcv.DataContainer` by given fields. | |
Args: | |
fields (Sequence[dict]): Each field is a dict like | |
``dict(key='xxx', **kwargs)``. The ``key`` in result will | |
be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. | |
Default: ``(dict(key='img', stack=True), dict(key='gt_bboxes'), | |
dict(key='gt_labels'))``. | |
""" | |
def __init__(self, | |
fields=(dict(key='img', stack=True), dict(key='gt_bboxes'), | |
dict(key='gt_labels'))): | |
self.fields = fields | |
def __call__(self, results): | |
"""Call function to convert data in results to | |
:obj:`mmcv.DataContainer`. | |
Args: | |
results (dict): Result dict contains the data to convert. | |
Returns: | |
dict: The result dict contains the data converted to \ | |
:obj:`mmcv.DataContainer`. | |
""" | |
for field in self.fields: | |
field = field.copy() | |
key = field.pop('key') | |
results[key] = DC(results[key], **field) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(fields={self.fields})' | |
class DefaultFormatBundle: | |
"""Default formatting bundle. | |
It simplifies the pipeline of formatting common fields, including "img", | |
"proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg". | |
These fields are formatted as follows. | |
- img: (1)transpose & to tensor, (2)to DataContainer (stack=True) | |
- proposals: (1)to tensor, (2)to DataContainer | |
- gt_bboxes: (1)to tensor, (2)to DataContainer | |
- gt_bboxes_ignore: (1)to tensor, (2)to DataContainer | |
- gt_labels: (1)to tensor, (2)to DataContainer | |
- gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True) | |
- gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \ | |
(3)to DataContainer (stack=True) | |
Args: | |
img_to_float (bool): Whether to force the image to be converted to | |
float type. Default: True. | |
pad_val (dict): A dict for padding value in batch collating, | |
the default value is `dict(img=0, masks=0, seg=255)`. | |
Without this argument, the padding value of "gt_semantic_seg" | |
will be set to 0 by default, which should be 255. | |
""" | |
def __init__(self, | |
img_to_float=True, | |
pad_val=dict(img=0, masks=0, seg=255)): | |
self.img_to_float = img_to_float | |
self.pad_val = pad_val | |
def __call__(self, results): | |
"""Call function to transform and format common fields in results. | |
Args: | |
results (dict): Result dict contains the data to convert. | |
Returns: | |
dict: The result dict contains the data that is formatted with \ | |
default bundle. | |
""" | |
if 'img' in results: | |
img = results['img'] | |
if self.img_to_float is True and img.dtype == np.uint8: | |
# Normally, image is of uint8 type without normalization. | |
# At this time, it needs to be forced to be converted to | |
# flot32, otherwise the model training and inference | |
# will be wrong. Only used for YOLOX currently . | |
img = img.astype(np.float32) | |
# add default meta keys | |
results = self._add_default_meta_keys(results) | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
# To improve the computational speed by by 3-5 times, apply: | |
# If image is not contiguous, use | |
# `numpy.transpose()` followed by `numpy.ascontiguousarray()` | |
# If image is already contiguous, use | |
# `torch.permute()` followed by `torch.contiguous()` | |
# Refer to https://github.com/open-mmlab/mmdetection/pull/9533 | |
# for more details | |
if not img.flags.c_contiguous: | |
img = np.ascontiguousarray(img.transpose(2, 0, 1)) | |
img = to_tensor(img) | |
else: | |
img = to_tensor(img).permute(2, 0, 1).contiguous() | |
results['img'] = DC( | |
img, padding_value=self.pad_val['img'], stack=True) | |
for key in ['proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels']: | |
if key not in results: | |
continue | |
results[key] = DC(to_tensor(results[key])) | |
if 'gt_masks' in results: | |
results['gt_masks'] = DC( | |
results['gt_masks'], | |
padding_value=self.pad_val['masks'], | |
cpu_only=True) | |
if 'gt_semantic_seg' in results: | |
results['gt_semantic_seg'] = DC( | |
to_tensor(results['gt_semantic_seg'][None, ...]), | |
padding_value=self.pad_val['seg'], | |
stack=True) | |
return results | |
def _add_default_meta_keys(self, results): | |
"""Add default meta keys. | |
We set default meta keys including `pad_shape`, `scale_factor` and | |
`img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and | |
`Pad` are implemented during the whole pipeline. | |
Args: | |
results (dict): Result dict contains the data to convert. | |
Returns: | |
results (dict): Updated result dict contains the data to convert. | |
""" | |
img = results['img'] | |
results.setdefault('pad_shape', img.shape) | |
results.setdefault('scale_factor', 1.0) | |
num_channels = 1 if len(img.shape) < 3 else img.shape[2] | |
results.setdefault( | |
'img_norm_cfg', | |
dict( | |
mean=np.zeros(num_channels, dtype=np.float32), | |
std=np.ones(num_channels, dtype=np.float32), | |
to_rgb=False)) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + \ | |
f'(img_to_float={self.img_to_float})' | |
class Collect: | |
"""Collect data from the loader relevant to the specific task. | |
This is usually the last stage of the data loader pipeline. Typically keys | |
is set to some subset of "img", "proposals", "gt_bboxes", | |
"gt_bboxes_ignore", "gt_labels", and/or "gt_masks". | |
The "img_meta" item is always populated. The contents of the "img_meta" | |
dictionary depends on "meta_keys". By default this includes: | |
- "img_shape": shape of the image input to the network as a tuple \ | |
(h, w, c). Note that images may be zero padded on the \ | |
bottom/right if the batch tensor is larger than this shape. | |
- "scale_factor": a float indicating the preprocessing scale | |
- "flip": a boolean indicating if image flip transform was used | |
- "filename": path to the image file | |
- "ori_shape": original shape of the image as a tuple (h, w, c) | |
- "pad_shape": image shape after padding | |
- "img_norm_cfg": a dict of normalization information: | |
- mean - per channel mean subtraction | |
- std - per channel std divisor | |
- to_rgb - bool indicating if bgr was converted to rgb | |
Args: | |
keys (Sequence[str]): Keys of results to be collected in ``data``. | |
meta_keys (Sequence[str], optional): Meta keys to be converted to | |
``mmcv.DataContainer`` and collected in ``data[img_metas]``. | |
Default: ``('filename', 'ori_filename', 'ori_shape', 'img_shape', | |
'pad_shape', 'scale_factor', 'flip', 'flip_direction', | |
'img_norm_cfg')`` | |
""" | |
def __init__(self, | |
keys, | |
meta_keys=('filename', 'ori_filename', 'ori_shape', | |
'img_shape', 'pad_shape', 'scale_factor', 'flip', | |
'flip_direction', 'img_norm_cfg')): | |
self.keys = keys | |
self.meta_keys = meta_keys | |
def __call__(self, results): | |
"""Call function to collect keys in results. The keys in ``meta_keys`` | |
will be converted to :obj:mmcv.DataContainer. | |
Args: | |
results (dict): Result dict contains the data to collect. | |
Returns: | |
dict: The result dict contains the following keys | |
- keys in``self.keys`` | |
- ``img_metas`` | |
""" | |
data = {} | |
img_meta = {} | |
for key in self.meta_keys: | |
img_meta[key] = results[key] | |
data['img_metas'] = DC(img_meta, cpu_only=True) | |
for key in self.keys: | |
data[key] = results[key] | |
return data | |
def __repr__(self): | |
return self.__class__.__name__ + \ | |
f'(keys={self.keys}, meta_keys={self.meta_keys})' | |
class WrapFieldsToLists: | |
"""Wrap fields of the data dictionary into lists for evaluation. | |
This class can be used as a last step of a test or validation | |
pipeline for single image evaluation or inference. | |
Example: | |
>>> test_pipeline = [ | |
>>> dict(type='LoadImageFromFile'), | |
>>> dict(type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
>>> dict(type='Pad', size_divisor=32), | |
>>> dict(type='ImageToTensor', keys=['img']), | |
>>> dict(type='Collect', keys=['img']), | |
>>> dict(type='WrapFieldsToLists') | |
>>> ] | |
""" | |
def __call__(self, results): | |
"""Call function to wrap fields into lists. | |
Args: | |
results (dict): Result dict contains the data to wrap. | |
Returns: | |
dict: The result dict where value of ``self.keys`` are wrapped \ | |
into list. | |
""" | |
# Wrap dict fields into lists | |
for key, val in results.items(): | |
results[key] = [val] | |
return results | |
def __repr__(self): | |
return f'{self.__class__.__name__}()' | |