RockeyCoss
add code files”
51f6859
raw
history blame
9.11 kB
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) 2018, Alexander Kirillov
# This file supports `file_client` for `panopticapi`,
# the source code is copied from `panopticapi`,
# only the way to load the gt images is modified.
import multiprocessing
import os
import mmcv
import numpy as np
try:
from panopticapi.evaluation import OFFSET, VOID, PQStat
from panopticapi.utils import rgb2id
except ImportError:
PQStat = None
rgb2id = None
VOID = 0
OFFSET = 256 * 256 * 256
def pq_compute_single_core(proc_id,
annotation_set,
gt_folder,
pred_folder,
categories,
file_client=None,
print_log=False):
"""The single core function to evaluate the metric of Panoptic
Segmentation.
Same as the function with the same name in `panopticapi`. Only the function
to load the images is changed to use the file client.
Args:
proc_id (int): The id of the mini process.
gt_folder (str): The path of the ground truth images.
pred_folder (str): The path of the prediction images.
categories (str): The categories of the dataset.
file_client (object): The file client of the dataset. If None,
the backend will be set to `disk`.
print_log (bool): Whether to print the log. Defaults to False.
"""
if PQStat is None:
raise RuntimeError(
'panopticapi is not installed, please install it by: '
'pip install git+https://github.com/cocodataset/'
'panopticapi.git.')
if file_client is None:
file_client_args = dict(backend='disk')
file_client = mmcv.FileClient(**file_client_args)
pq_stat = PQStat()
idx = 0
for gt_ann, pred_ann in annotation_set:
if print_log and idx % 100 == 0:
print('Core: {}, {} from {} images processed'.format(
proc_id, idx, len(annotation_set)))
idx += 1
# The gt images can be on the local disk or `ceph`, so we use
# file_client here.
img_bytes = file_client.get(
os.path.join(gt_folder, gt_ann['file_name']))
pan_gt = mmcv.imfrombytes(img_bytes, flag='color', channel_order='rgb')
pan_gt = rgb2id(pan_gt)
# The predictions can only be on the local dist now.
pan_pred = mmcv.imread(
os.path.join(pred_folder, pred_ann['file_name']),
flag='color',
channel_order='rgb')
pan_pred = rgb2id(pan_pred)
gt_segms = {el['id']: el for el in gt_ann['segments_info']}
pred_segms = {el['id']: el for el in pred_ann['segments_info']}
# predicted segments area calculation + prediction sanity checks
pred_labels_set = set(el['id'] for el in pred_ann['segments_info'])
labels, labels_cnt = np.unique(pan_pred, return_counts=True)
for label, label_cnt in zip(labels, labels_cnt):
if label not in pred_segms:
if label == VOID:
continue
raise KeyError(
'In the image with ID {} segment with ID {} is '
'presented in PNG and not presented in JSON.'.format(
gt_ann['image_id'], label))
pred_segms[label]['area'] = label_cnt
pred_labels_set.remove(label)
if pred_segms[label]['category_id'] not in categories:
raise KeyError(
'In the image with ID {} segment with ID {} has '
'unknown category_id {}.'.format(
gt_ann['image_id'], label,
pred_segms[label]['category_id']))
if len(pred_labels_set) != 0:
raise KeyError(
'In the image with ID {} the following segment IDs {} '
'are presented in JSON and not presented in PNG.'.format(
gt_ann['image_id'], list(pred_labels_set)))
# confusion matrix calculation
pan_gt_pred = pan_gt.astype(np.uint64) * OFFSET + pan_pred.astype(
np.uint64)
gt_pred_map = {}
labels, labels_cnt = np.unique(pan_gt_pred, return_counts=True)
for label, intersection in zip(labels, labels_cnt):
gt_id = label // OFFSET
pred_id = label % OFFSET
gt_pred_map[(gt_id, pred_id)] = intersection
# count all matched pairs
gt_matched = set()
pred_matched = set()
for label_tuple, intersection in gt_pred_map.items():
gt_label, pred_label = label_tuple
if gt_label not in gt_segms:
continue
if pred_label not in pred_segms:
continue
if gt_segms[gt_label]['iscrowd'] == 1:
continue
if gt_segms[gt_label]['category_id'] != pred_segms[pred_label][
'category_id']:
continue
union = pred_segms[pred_label]['area'] + gt_segms[gt_label][
'area'] - intersection - gt_pred_map.get((VOID, pred_label), 0)
iou = intersection / union
if iou > 0.5:
pq_stat[gt_segms[gt_label]['category_id']].tp += 1
pq_stat[gt_segms[gt_label]['category_id']].iou += iou
gt_matched.add(gt_label)
pred_matched.add(pred_label)
# count false positives
crowd_labels_dict = {}
for gt_label, gt_info in gt_segms.items():
if gt_label in gt_matched:
continue
# crowd segments are ignored
if gt_info['iscrowd'] == 1:
crowd_labels_dict[gt_info['category_id']] = gt_label
continue
pq_stat[gt_info['category_id']].fn += 1
# count false positives
for pred_label, pred_info in pred_segms.items():
if pred_label in pred_matched:
continue
# intersection of the segment with VOID
intersection = gt_pred_map.get((VOID, pred_label), 0)
# plus intersection with corresponding CROWD region if it exists
if pred_info['category_id'] in crowd_labels_dict:
intersection += gt_pred_map.get(
(crowd_labels_dict[pred_info['category_id']], pred_label),
0)
# predicted segment is ignored if more than half of
# the segment correspond to VOID and CROWD regions
if intersection / pred_info['area'] > 0.5:
continue
pq_stat[pred_info['category_id']].fp += 1
if print_log:
print('Core: {}, all {} images processed'.format(
proc_id, len(annotation_set)))
return pq_stat
def pq_compute_multi_core(matched_annotations_list,
gt_folder,
pred_folder,
categories,
file_client=None,
nproc=32):
"""Evaluate the metrics of Panoptic Segmentation with multithreading.
Same as the function with the same name in `panopticapi`.
Args:
matched_annotations_list (list): The matched annotation list. Each
element is a tuple of annotations of the same image with the
format (gt_anns, pred_anns).
gt_folder (str): The path of the ground truth images.
pred_folder (str): The path of the prediction images.
categories (str): The categories of the dataset.
file_client (object): The file client of the dataset. If None,
the backend will be set to `disk`.
nproc (int): Number of processes for panoptic quality computing.
Defaults to 32. When `nproc` exceeds the number of cpu cores,
the number of cpu cores is used.
"""
if PQStat is None:
raise RuntimeError(
'panopticapi is not installed, please install it by: '
'pip install git+https://github.com/cocodataset/'
'panopticapi.git.')
if file_client is None:
file_client_args = dict(backend='disk')
file_client = mmcv.FileClient(**file_client_args)
cpu_num = min(nproc, multiprocessing.cpu_count())
annotations_split = np.array_split(matched_annotations_list, cpu_num)
print('Number of cores: {}, images per core: {}'.format(
cpu_num, len(annotations_split[0])))
workers = multiprocessing.Pool(processes=cpu_num)
processes = []
for proc_id, annotation_set in enumerate(annotations_split):
p = workers.apply_async(pq_compute_single_core,
(proc_id, annotation_set, gt_folder,
pred_folder, categories, file_client))
processes.append(p)
# Close the process pool, otherwise it will lead to memory
# leaking problems.
workers.close()
workers.join()
pq_stat = PQStat()
for p in processes:
pq_stat += p.get()
return pq_stat