Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from mmcv.runner import auto_fp16, force_fp32 | |
from mmdet.core import mask_target | |
from mmdet.models.builder import HEADS | |
from mmdet.models.dense_heads.atss_head import reduce_mean | |
from mmdet.models.utils import build_transformer | |
from .fcn_mask_head import FCNMaskHead | |
class DynamicMaskHead(FCNMaskHead): | |
r"""Dynamic Mask Head for | |
`Instances as Queries <http://arxiv.org/abs/2105.01928>`_ | |
Args: | |
num_convs (int): Number of convolution layer. | |
Defaults to 4. | |
roi_feat_size (int): The output size of RoI extractor, | |
Defaults to 14. | |
in_channels (int): Input feature channels. | |
Defaults to 256. | |
conv_kernel_size (int): Kernel size of convolution layers. | |
Defaults to 3. | |
conv_out_channels (int): Output channels of convolution layers. | |
Defaults to 256. | |
num_classes (int): Number of classes. | |
Defaults to 80 | |
class_agnostic (int): Whether generate class agnostic prediction. | |
Defaults to False. | |
dropout (float): Probability of drop the channel. | |
Defaults to 0.0 | |
upsample_cfg (dict): The config for upsample layer. | |
conv_cfg (dict): The convolution layer config. | |
norm_cfg (dict): The norm layer config. | |
dynamic_conv_cfg (dict): The dynamic convolution layer config. | |
loss_mask (dict): The config for mask loss. | |
""" | |
def __init__(self, | |
num_convs=4, | |
roi_feat_size=14, | |
in_channels=256, | |
conv_kernel_size=3, | |
conv_out_channels=256, | |
num_classes=80, | |
class_agnostic=False, | |
upsample_cfg=dict(type='deconv', scale_factor=2), | |
conv_cfg=None, | |
norm_cfg=None, | |
dynamic_conv_cfg=dict( | |
type='DynamicConv', | |
in_channels=256, | |
feat_channels=64, | |
out_channels=256, | |
input_feat_shape=14, | |
with_proj=False, | |
act_cfg=dict(type='ReLU', inplace=True), | |
norm_cfg=dict(type='LN')), | |
loss_mask=dict(type='DiceLoss', loss_weight=8.0), | |
**kwargs): | |
super(DynamicMaskHead, self).__init__( | |
num_convs=num_convs, | |
roi_feat_size=roi_feat_size, | |
in_channels=in_channels, | |
conv_kernel_size=conv_kernel_size, | |
conv_out_channels=conv_out_channels, | |
num_classes=num_classes, | |
class_agnostic=class_agnostic, | |
upsample_cfg=upsample_cfg, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
loss_mask=loss_mask, | |
**kwargs) | |
assert class_agnostic is False, \ | |
'DynamicMaskHead only support class_agnostic=False' | |
self.fp16_enabled = False | |
self.instance_interactive_conv = build_transformer(dynamic_conv_cfg) | |
def init_weights(self): | |
"""Use xavier initialization for all weight parameter and set | |
classification head bias as a specific value when use focal loss.""" | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
nn.init.constant_(self.conv_logits.bias, 0.) | |
def forward(self, roi_feat, proposal_feat): | |
"""Forward function of DynamicMaskHead. | |
Args: | |
roi_feat (Tensor): Roi-pooling features with shape | |
(batch_size*num_proposals, feature_dimensions, | |
pooling_h , pooling_w). | |
proposal_feat (Tensor): Intermediate feature get from | |
diihead in last stage, has shape | |
(batch_size*num_proposals, feature_dimensions) | |
Returns: | |
mask_pred (Tensor): Predicted foreground masks with shape | |
(batch_size*num_proposals, num_classes, | |
pooling_h*2, pooling_w*2). | |
""" | |
proposal_feat = proposal_feat.reshape(-1, self.in_channels) | |
proposal_feat_iic = self.instance_interactive_conv( | |
proposal_feat, roi_feat) | |
x = proposal_feat_iic.permute(0, 2, 1).reshape(roi_feat.size()) | |
for conv in self.convs: | |
x = conv(x) | |
if self.upsample is not None: | |
x = self.upsample(x) | |
if self.upsample_method == 'deconv': | |
x = self.relu(x) | |
mask_pred = self.conv_logits(x) | |
return mask_pred | |
def loss(self, mask_pred, mask_targets, labels): | |
num_pos = labels.new_ones(labels.size()).float().sum() | |
avg_factor = torch.clamp(reduce_mean(num_pos), min=1.).item() | |
loss = dict() | |
if mask_pred.size(0) == 0: | |
loss_mask = mask_pred.sum() | |
else: | |
loss_mask = self.loss_mask( | |
mask_pred[torch.arange(num_pos).long(), labels, ...].sigmoid(), | |
mask_targets, | |
avg_factor=avg_factor) | |
loss['loss_mask'] = loss_mask | |
return loss | |
def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg): | |
pos_proposals = [res.pos_bboxes for res in sampling_results] | |
pos_assigned_gt_inds = [ | |
res.pos_assigned_gt_inds for res in sampling_results | |
] | |
mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, | |
gt_masks, rcnn_train_cfg) | |
return mask_targets | |