RockeyCoss
add code files”
51f6859
raw
history blame
18.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa
import os
import warnings
import numpy as np
import torch
import torch.nn.functional as F
from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point
from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks
from .. import builder
from ..builder import HEADS
from .standard_roi_head import StandardRoIHead
@HEADS.register_module()
class PointRendRoIHead(StandardRoIHead):
"""`PointRend <https://arxiv.org/abs/1912.08193>`_."""
def __init__(self, point_head, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.with_bbox and self.with_mask
self.init_point_head(point_head)
def init_point_head(self, point_head):
"""Initialize ``point_head``"""
self.point_head = builder.build_head(point_head)
def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
img_metas):
"""Run forward function and calculate loss for mask head and point head
in training."""
mask_results = super()._mask_forward_train(x, sampling_results,
bbox_feats, gt_masks,
img_metas)
if mask_results['loss_mask'] is not None:
loss_point = self._mask_point_forward_train(
x, sampling_results, mask_results['mask_pred'], gt_masks,
img_metas)
mask_results['loss_mask'].update(loss_point)
return mask_results
def _mask_point_forward_train(self, x, sampling_results, mask_pred,
gt_masks, img_metas):
"""Run forward function and calculate loss for point head in
training."""
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
rel_roi_points = self.point_head.get_roi_rel_points_train(
mask_pred, pos_labels, cfg=self.train_cfg)
rois = bbox2roi([res.pos_bboxes for res in sampling_results])
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, rois, rel_roi_points, img_metas)
coarse_point_feats = point_sample(mask_pred, rel_roi_points)
mask_point_pred = self.point_head(fine_grained_point_feats,
coarse_point_feats)
mask_point_target = self.point_head.get_targets(
rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg)
loss_mask_point = self.point_head.loss(mask_point_pred,
mask_point_target, pos_labels)
return loss_mask_point
def _get_fine_grained_point_feats(self, x, rois, rel_roi_points,
img_metas):
"""Sample fine grained feats from each level feature map and
concatenate them together.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
2) that contains [0, 1] x [0, 1] normalized coordinates of the
most uncertain points from the [mask_height, mask_width] grid.
img_metas (list[dict]): Image meta info.
Returns:
Tensor: The fine grained features for each points,
has shape (num_rois, feats_channels, num_points).
"""
num_imgs = len(img_metas)
fine_grained_feats = []
for idx in range(self.mask_roi_extractor.num_inputs):
feats = x[idx]
spatial_scale = 1. / float(
self.mask_roi_extractor.featmap_strides[idx])
point_feats = []
for batch_ind in range(num_imgs):
# unravel batch dim
feat = feats[batch_ind].unsqueeze(0)
inds = (rois[:, 0].long() == batch_ind)
if inds.any():
rel_img_points = rel_roi_point_to_rel_img_point(
rois[inds], rel_roi_points[inds], feat.shape[2:],
spatial_scale).unsqueeze(0)
point_feat = point_sample(feat, rel_img_points)
point_feat = point_feat.squeeze(0).transpose(0, 1)
point_feats.append(point_feat)
fine_grained_feats.append(torch.cat(point_feats, dim=0))
return torch.cat(fine_grained_feats, dim=1)
def _mask_point_forward_test(self, x, rois, label_pred, mask_pred,
img_metas):
"""Mask refining process with point head in testing.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
label_pred (Tensor): The predication class for each rois.
mask_pred (Tensor): The predication coarse masks of
shape (num_rois, num_classes, small_size, small_size).
img_metas (list[dict]): Image meta info.
Returns:
Tensor: The refined masks of shape (num_rois, num_classes,
large_size, large_size).
"""
refined_mask_pred = mask_pred.clone()
for subdivision_step in range(self.test_cfg.subdivision_steps):
refined_mask_pred = F.interpolate(
refined_mask_pred,
scale_factor=self.test_cfg.scale_factor,
mode='bilinear',
align_corners=False)
# If `subdivision_num_points` is larger or equal to the
# resolution of the next step, then we can skip this step
num_rois, channels, mask_height, mask_width = \
refined_mask_pred.shape
if (self.test_cfg.subdivision_num_points >=
self.test_cfg.scale_factor**2 * mask_height * mask_width
and
subdivision_step < self.test_cfg.subdivision_steps - 1):
continue
point_indices, rel_roi_points = \
self.point_head.get_roi_rel_points_test(
refined_mask_pred, label_pred, cfg=self.test_cfg)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, rois, rel_roi_points, img_metas)
coarse_point_feats = point_sample(mask_pred, rel_roi_points)
mask_point_pred = self.point_head(fine_grained_point_feats,
coarse_point_feats)
point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
refined_mask_pred = refined_mask_pred.reshape(
num_rois, channels, mask_height * mask_width)
refined_mask_pred = refined_mask_pred.scatter_(
2, point_indices, mask_point_pred)
refined_mask_pred = refined_mask_pred.view(num_rois, channels,
mask_height, mask_width)
return refined_mask_pred
def simple_test_mask(self,
x,
img_metas,
det_bboxes,
det_labels,
rescale=False):
"""Obtain mask prediction without augmentation."""
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
scale_factors = tuple(meta['scale_factor'] for meta in img_metas)
if isinstance(scale_factors[0], float):
warnings.warn(
'Scale factor in img_metas should be a '
'ndarray with shape (4,) '
'arrange as (factor_w, factor_h, factor_w, factor_h), '
'The scale_factor with float type has been deprecated. ')
scale_factors = np.array([scale_factors] * 4, dtype=np.float32)
num_imgs = len(det_bboxes)
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
segm_results = [[[] for _ in range(self.mask_head.num_classes)]
for _ in range(num_imgs)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
_bboxes = [det_bboxes[i][:, :4] for i in range(len(det_bboxes))]
if rescale:
scale_factors = [
torch.from_numpy(scale_factor).to(det_bboxes[0].device)
for scale_factor in scale_factors
]
_bboxes = [
_bboxes[i] * scale_factors[i] for i in range(len(_bboxes))
]
mask_rois = bbox2roi(_bboxes)
mask_results = self._mask_forward(x, mask_rois)
# split batch mask prediction back to each image
mask_pred = mask_results['mask_pred']
num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes]
mask_preds = mask_pred.split(num_mask_roi_per_img, 0)
mask_rois = mask_rois.split(num_mask_roi_per_img, 0)
# apply mask post-processing to each image individually
segm_results = []
for i in range(num_imgs):
if det_bboxes[i].shape[0] == 0:
segm_results.append(
[[] for _ in range(self.mask_head.num_classes)])
else:
x_i = [xx[[i]] for xx in x]
mask_rois_i = mask_rois[i]
mask_rois_i[:, 0] = 0 # TODO: remove this hack
mask_pred_i = self._mask_point_forward_test(
x_i, mask_rois_i, det_labels[i], mask_preds[i],
[img_metas])
segm_result = self.mask_head.get_seg_masks(
mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg,
ori_shapes[i], scale_factors[i], rescale)
segm_results.append(segm_result)
return segm_results
def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels):
"""Test for mask head with test time augmentation."""
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes)]
else:
aug_masks = []
for x, img_meta in zip(feats, img_metas):
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
scale_factor, flip)
mask_rois = bbox2roi([_bboxes])
mask_results = self._mask_forward(x, mask_rois)
mask_results['mask_pred'] = self._mask_point_forward_test(
x, mask_rois, det_labels, mask_results['mask_pred'],
img_meta)
# convert to numpy array to save memory
aug_masks.append(
mask_results['mask_pred'].sigmoid().cpu().numpy())
merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg)
ori_shape = img_metas[0][0]['ori_shape']
segm_result = self.mask_head.get_seg_masks(
merged_masks,
det_bboxes,
det_labels,
self.test_cfg,
ori_shape,
scale_factor=1.0,
rescale=False)
return segm_result
def _onnx_get_fine_grained_point_feats(self, x, rois, rel_roi_points):
"""Export the process of sampling fine grained feats to onnx.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
2) that contains [0, 1] x [0, 1] normalized coordinates of the
most uncertain points from the [mask_height, mask_width] grid.
Returns:
Tensor: The fine grained features for each points,
has shape (num_rois, feats_channels, num_points).
"""
batch_size = x[0].shape[0]
num_rois = rois.shape[0]
fine_grained_feats = []
for idx in range(self.mask_roi_extractor.num_inputs):
feats = x[idx]
spatial_scale = 1. / float(
self.mask_roi_extractor.featmap_strides[idx])
rel_img_points = rel_roi_point_to_rel_img_point(
rois, rel_roi_points, feats, spatial_scale)
channels = feats.shape[1]
num_points = rel_img_points.shape[1]
rel_img_points = rel_img_points.reshape(batch_size, -1, num_points,
2)
point_feats = point_sample(feats, rel_img_points)
point_feats = point_feats.transpose(1, 2).reshape(
num_rois, channels, num_points)
fine_grained_feats.append(point_feats)
return torch.cat(fine_grained_feats, dim=1)
def _mask_point_onnx_export(self, x, rois, label_pred, mask_pred):
"""Export mask refining process with point head to onnx.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
label_pred (Tensor): The predication class for each rois.
mask_pred (Tensor): The predication coarse masks of
shape (num_rois, num_classes, small_size, small_size).
Returns:
Tensor: The refined masks of shape (num_rois, num_classes,
large_size, large_size).
"""
refined_mask_pred = mask_pred.clone()
for subdivision_step in range(self.test_cfg.subdivision_steps):
refined_mask_pred = F.interpolate(
refined_mask_pred,
scale_factor=self.test_cfg.scale_factor,
mode='bilinear',
align_corners=False)
# If `subdivision_num_points` is larger or equal to the
# resolution of the next step, then we can skip this step
num_rois, channels, mask_height, mask_width = \
refined_mask_pred.shape
if (self.test_cfg.subdivision_num_points >=
self.test_cfg.scale_factor**2 * mask_height * mask_width
and
subdivision_step < self.test_cfg.subdivision_steps - 1):
continue
point_indices, rel_roi_points = \
self.point_head.get_roi_rel_points_test(
refined_mask_pred, label_pred, cfg=self.test_cfg)
fine_grained_point_feats = self._onnx_get_fine_grained_point_feats(
x, rois, rel_roi_points)
coarse_point_feats = point_sample(mask_pred, rel_roi_points)
mask_point_pred = self.point_head(fine_grained_point_feats,
coarse_point_feats)
point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
refined_mask_pred = refined_mask_pred.reshape(
num_rois, channels, mask_height * mask_width)
is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT'
# avoid ScatterElements op in ONNX for TensorRT
if is_trt_backend:
mask_shape = refined_mask_pred.shape
point_shape = point_indices.shape
inds_dim0 = torch.arange(point_shape[0]).reshape(
point_shape[0], 1, 1).expand_as(point_indices)
inds_dim1 = torch.arange(point_shape[1]).reshape(
1, point_shape[1], 1).expand_as(point_indices)
inds_1d = inds_dim0.reshape(
-1) * mask_shape[1] * mask_shape[2] + inds_dim1.reshape(
-1) * mask_shape[2] + point_indices.reshape(-1)
refined_mask_pred = refined_mask_pred.reshape(-1)
refined_mask_pred[inds_1d] = mask_point_pred.reshape(-1)
refined_mask_pred = refined_mask_pred.reshape(*mask_shape)
else:
refined_mask_pred = refined_mask_pred.scatter_(
2, point_indices, mask_point_pred)
refined_mask_pred = refined_mask_pred.view(num_rois, channels,
mask_height, mask_width)
return refined_mask_pred
def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs):
"""Export mask branch to onnx which supports batch inference.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
img_metas (list[dict]): Image meta info.
det_bboxes (Tensor): Bboxes and corresponding scores.
has shape [N, num_bboxes, 5].
det_labels (Tensor): class labels of
shape [N, num_bboxes].
Returns:
Tensor: The segmentation results of shape [N, num_bboxes,
image_height, image_width].
"""
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
raise RuntimeError('[ONNX Error] Can not record MaskHead '
'as it has not been executed this time')
batch_size = det_bboxes.size(0)
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
det_bboxes = det_bboxes[..., :4]
batch_index = torch.arange(
det_bboxes.size(0), device=det_bboxes.device).float().view(
-1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1)
mask_rois = torch.cat([batch_index, det_bboxes], dim=-1)
mask_rois = mask_rois.view(-1, 5)
mask_results = self._mask_forward(x, mask_rois)
mask_pred = mask_results['mask_pred']
max_shape = img_metas[0]['img_shape_for_onnx']
num_det = det_bboxes.shape[1]
det_bboxes = det_bboxes.reshape(-1, 4)
det_labels = det_labels.reshape(-1)
mask_pred = self._mask_point_onnx_export(x, mask_rois, det_labels,
mask_pred)
segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes,
det_labels, self.test_cfg,
max_shape)
segm_results = segm_results.reshape(batch_size, num_det, max_shape[0],
max_shape[1])
return segm_results