Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes, | |
merge_aug_masks, multiclass_nms) | |
from ..builder import HEADS, build_head, build_roi_extractor | |
from ..utils.brick_wrappers import adaptive_avg_pool2d | |
from .cascade_roi_head import CascadeRoIHead | |
class HybridTaskCascadeRoIHead(CascadeRoIHead): | |
"""Hybrid task cascade roi head including one bbox head and one mask head. | |
https://arxiv.org/abs/1901.07518 | |
""" | |
def __init__(self, | |
num_stages, | |
stage_loss_weights, | |
semantic_roi_extractor=None, | |
semantic_head=None, | |
semantic_fusion=('bbox', 'mask'), | |
interleaved=True, | |
mask_info_flow=True, | |
**kwargs): | |
super(HybridTaskCascadeRoIHead, | |
self).__init__(num_stages, stage_loss_weights, **kwargs) | |
assert self.with_bbox | |
assert not self.with_shared_head # shared head is not supported | |
if semantic_head is not None: | |
self.semantic_roi_extractor = build_roi_extractor( | |
semantic_roi_extractor) | |
self.semantic_head = build_head(semantic_head) | |
self.semantic_fusion = semantic_fusion | |
self.interleaved = interleaved | |
self.mask_info_flow = mask_info_flow | |
def with_semantic(self): | |
"""bool: whether the head has semantic head""" | |
if hasattr(self, 'semantic_head') and self.semantic_head is not None: | |
return True | |
else: | |
return False | |
def forward_dummy(self, x, proposals): | |
"""Dummy forward function.""" | |
outs = () | |
# semantic head | |
if self.with_semantic: | |
_, semantic_feat = self.semantic_head(x) | |
else: | |
semantic_feat = None | |
# bbox heads | |
rois = bbox2roi([proposals]) | |
for i in range(self.num_stages): | |
bbox_results = self._bbox_forward( | |
i, x, rois, semantic_feat=semantic_feat) | |
outs = outs + (bbox_results['cls_score'], | |
bbox_results['bbox_pred']) | |
# mask heads | |
if self.with_mask: | |
mask_rois = rois[:100] | |
mask_roi_extractor = self.mask_roi_extractor[-1] | |
mask_feats = mask_roi_extractor( | |
x[:len(mask_roi_extractor.featmap_strides)], mask_rois) | |
if self.with_semantic and 'mask' in self.semantic_fusion: | |
mask_semantic_feat = self.semantic_roi_extractor( | |
[semantic_feat], mask_rois) | |
mask_feats = mask_feats + mask_semantic_feat | |
last_feat = None | |
for i in range(self.num_stages): | |
mask_head = self.mask_head[i] | |
if self.mask_info_flow: | |
mask_pred, last_feat = mask_head(mask_feats, last_feat) | |
else: | |
mask_pred = mask_head(mask_feats) | |
outs = outs + (mask_pred, ) | |
return outs | |
def _bbox_forward_train(self, | |
stage, | |
x, | |
sampling_results, | |
gt_bboxes, | |
gt_labels, | |
rcnn_train_cfg, | |
semantic_feat=None): | |
"""Run forward function and calculate loss for box head in training.""" | |
bbox_head = self.bbox_head[stage] | |
rois = bbox2roi([res.bboxes for res in sampling_results]) | |
bbox_results = self._bbox_forward( | |
stage, x, rois, semantic_feat=semantic_feat) | |
bbox_targets = bbox_head.get_targets(sampling_results, gt_bboxes, | |
gt_labels, rcnn_train_cfg) | |
loss_bbox = bbox_head.loss(bbox_results['cls_score'], | |
bbox_results['bbox_pred'], rois, | |
*bbox_targets) | |
bbox_results.update( | |
loss_bbox=loss_bbox, | |
rois=rois, | |
bbox_targets=bbox_targets, | |
) | |
return bbox_results | |
def _mask_forward_train(self, | |
stage, | |
x, | |
sampling_results, | |
gt_masks, | |
rcnn_train_cfg, | |
semantic_feat=None): | |
"""Run forward function and calculate loss for mask head in | |
training.""" | |
mask_roi_extractor = self.mask_roi_extractor[stage] | |
mask_head = self.mask_head[stage] | |
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) | |
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], | |
pos_rois) | |
# semantic feature fusion | |
# element-wise sum for original features and pooled semantic features | |
if self.with_semantic and 'mask' in self.semantic_fusion: | |
mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], | |
pos_rois) | |
if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: | |
mask_semantic_feat = F.adaptive_avg_pool2d( | |
mask_semantic_feat, mask_feats.shape[-2:]) | |
mask_feats = mask_feats + mask_semantic_feat | |
# mask information flow | |
# forward all previous mask heads to obtain last_feat, and fuse it | |
# with the normal mask feature | |
if self.mask_info_flow: | |
last_feat = None | |
for i in range(stage): | |
last_feat = self.mask_head[i]( | |
mask_feats, last_feat, return_logits=False) | |
mask_pred = mask_head(mask_feats, last_feat, return_feat=False) | |
else: | |
mask_pred = mask_head(mask_feats, return_feat=False) | |
mask_targets = mask_head.get_targets(sampling_results, gt_masks, | |
rcnn_train_cfg) | |
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) | |
loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels) | |
mask_results = dict(loss_mask=loss_mask) | |
return mask_results | |
def _bbox_forward(self, stage, x, rois, semantic_feat=None): | |
"""Box head forward function used in both training and testing.""" | |
bbox_roi_extractor = self.bbox_roi_extractor[stage] | |
bbox_head = self.bbox_head[stage] | |
bbox_feats = bbox_roi_extractor( | |
x[:len(bbox_roi_extractor.featmap_strides)], rois) | |
if self.with_semantic and 'bbox' in self.semantic_fusion: | |
bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat], | |
rois) | |
if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]: | |
bbox_semantic_feat = adaptive_avg_pool2d( | |
bbox_semantic_feat, bbox_feats.shape[-2:]) | |
bbox_feats = bbox_feats + bbox_semantic_feat | |
cls_score, bbox_pred = bbox_head(bbox_feats) | |
bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred) | |
return bbox_results | |
def _mask_forward_test(self, stage, x, bboxes, semantic_feat=None): | |
"""Mask head forward function for testing.""" | |
mask_roi_extractor = self.mask_roi_extractor[stage] | |
mask_head = self.mask_head[stage] | |
mask_rois = bbox2roi([bboxes]) | |
mask_feats = mask_roi_extractor( | |
x[:len(mask_roi_extractor.featmap_strides)], mask_rois) | |
if self.with_semantic and 'mask' in self.semantic_fusion: | |
mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], | |
mask_rois) | |
if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: | |
mask_semantic_feat = F.adaptive_avg_pool2d( | |
mask_semantic_feat, mask_feats.shape[-2:]) | |
mask_feats = mask_feats + mask_semantic_feat | |
if self.mask_info_flow: | |
last_feat = None | |
last_pred = None | |
for i in range(stage): | |
mask_pred, last_feat = self.mask_head[i](mask_feats, last_feat) | |
if last_pred is not None: | |
mask_pred = mask_pred + last_pred | |
last_pred = mask_pred | |
mask_pred = mask_head(mask_feats, last_feat, return_feat=False) | |
if last_pred is not None: | |
mask_pred = mask_pred + last_pred | |
else: | |
mask_pred = mask_head(mask_feats) | |
return mask_pred | |
def forward_train(self, | |
x, | |
img_metas, | |
proposal_list, | |
gt_bboxes, | |
gt_labels, | |
gt_bboxes_ignore=None, | |
gt_masks=None, | |
gt_semantic_seg=None): | |
""" | |
Args: | |
x (list[Tensor]): list of multi-level img features. | |
img_metas (list[dict]): list of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`mmdet/datasets/pipelines/formatting.py:Collect`. | |
proposal_list (list[Tensors]): list of region proposals. | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
gt_bboxes_ignore (None, list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
gt_masks (None, Tensor) : true segmentation masks for each box | |
used if the architecture supports a segmentation task. | |
gt_semantic_seg (None, list[Tensor]): semantic segmentation masks | |
used if the architecture supports semantic segmentation task. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
# semantic segmentation part | |
# 2 outputs: segmentation prediction and embedded features | |
losses = dict() | |
if self.with_semantic: | |
semantic_pred, semantic_feat = self.semantic_head(x) | |
loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_seg) | |
losses['loss_semantic_seg'] = loss_seg | |
else: | |
semantic_feat = None | |
for i in range(self.num_stages): | |
self.current_stage = i | |
rcnn_train_cfg = self.train_cfg[i] | |
lw = self.stage_loss_weights[i] | |
# assign gts and sample proposals | |
sampling_results = [] | |
bbox_assigner = self.bbox_assigner[i] | |
bbox_sampler = self.bbox_sampler[i] | |
num_imgs = len(img_metas) | |
if gt_bboxes_ignore is None: | |
gt_bboxes_ignore = [None for _ in range(num_imgs)] | |
for j in range(num_imgs): | |
assign_result = bbox_assigner.assign(proposal_list[j], | |
gt_bboxes[j], | |
gt_bboxes_ignore[j], | |
gt_labels[j]) | |
sampling_result = bbox_sampler.sample( | |
assign_result, | |
proposal_list[j], | |
gt_bboxes[j], | |
gt_labels[j], | |
feats=[lvl_feat[j][None] for lvl_feat in x]) | |
sampling_results.append(sampling_result) | |
# bbox head forward and loss | |
bbox_results = \ | |
self._bbox_forward_train( | |
i, x, sampling_results, gt_bboxes, gt_labels, | |
rcnn_train_cfg, semantic_feat) | |
roi_labels = bbox_results['bbox_targets'][0] | |
for name, value in bbox_results['loss_bbox'].items(): | |
losses[f's{i}.{name}'] = ( | |
value * lw if 'loss' in name else value) | |
# mask head forward and loss | |
if self.with_mask: | |
# interleaved execution: use regressed bboxes by the box branch | |
# to train the mask branch | |
if self.interleaved: | |
pos_is_gts = [res.pos_is_gt for res in sampling_results] | |
with torch.no_grad(): | |
proposal_list = self.bbox_head[i].refine_bboxes( | |
bbox_results['rois'], roi_labels, | |
bbox_results['bbox_pred'], pos_is_gts, img_metas) | |
# re-assign and sample 512 RoIs from 512 RoIs | |
sampling_results = [] | |
for j in range(num_imgs): | |
assign_result = bbox_assigner.assign( | |
proposal_list[j], gt_bboxes[j], | |
gt_bboxes_ignore[j], gt_labels[j]) | |
sampling_result = bbox_sampler.sample( | |
assign_result, | |
proposal_list[j], | |
gt_bboxes[j], | |
gt_labels[j], | |
feats=[lvl_feat[j][None] for lvl_feat in x]) | |
sampling_results.append(sampling_result) | |
mask_results = self._mask_forward_train( | |
i, x, sampling_results, gt_masks, rcnn_train_cfg, | |
semantic_feat) | |
for name, value in mask_results['loss_mask'].items(): | |
losses[f's{i}.{name}'] = ( | |
value * lw if 'loss' in name else value) | |
# refine bboxes (same as Cascade R-CNN) | |
if i < self.num_stages - 1 and not self.interleaved: | |
pos_is_gts = [res.pos_is_gt for res in sampling_results] | |
with torch.no_grad(): | |
proposal_list = self.bbox_head[i].refine_bboxes( | |
bbox_results['rois'], roi_labels, | |
bbox_results['bbox_pred'], pos_is_gts, img_metas) | |
return losses | |
def simple_test(self, x, proposal_list, img_metas, rescale=False): | |
"""Test without augmentation. | |
Args: | |
x (tuple[Tensor]): Features from upstream network. Each | |
has shape (batch_size, c, h, w). | |
proposal_list (list(Tensor)): Proposals from rpn head. | |
Each has shape (num_proposals, 5), last dimension | |
5 represent (x1, y1, x2, y2, score). | |
img_metas (list[dict]): Meta information of images. | |
rescale (bool): Whether to rescale the results to | |
the original image. Default: True. | |
Returns: | |
list[list[np.ndarray]] or list[tuple]: When no mask branch, | |
it is bbox results of each image and classes with type | |
`list[list[np.ndarray]]`. The outer list | |
corresponds to each image. The inner list | |
corresponds to each class. When the model has mask branch, | |
it contains bbox results and mask results. | |
The outer list corresponds to each image, and first element | |
of tuple is bbox results, second element is mask results. | |
""" | |
if self.with_semantic: | |
_, semantic_feat = self.semantic_head(x) | |
else: | |
semantic_feat = None | |
num_imgs = len(proposal_list) | |
img_shapes = tuple(meta['img_shape'] for meta in img_metas) | |
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) | |
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) | |
# "ms" in variable names means multi-stage | |
ms_bbox_result = {} | |
ms_segm_result = {} | |
ms_scores = [] | |
rcnn_test_cfg = self.test_cfg | |
rois = bbox2roi(proposal_list) | |
if rois.shape[0] == 0: | |
# There is no proposal in the whole batch | |
bbox_results = [[ | |
np.zeros((0, 5), dtype=np.float32) | |
for _ in range(self.bbox_head[-1].num_classes) | |
]] * num_imgs | |
if self.with_mask: | |
mask_classes = self.mask_head[-1].num_classes | |
segm_results = [[[] for _ in range(mask_classes)] | |
for _ in range(num_imgs)] | |
results = list(zip(bbox_results, segm_results)) | |
else: | |
results = bbox_results | |
return results | |
for i in range(self.num_stages): | |
bbox_head = self.bbox_head[i] | |
bbox_results = self._bbox_forward( | |
i, x, rois, semantic_feat=semantic_feat) | |
# split batch bbox prediction back to each image | |
cls_score = bbox_results['cls_score'] | |
bbox_pred = bbox_results['bbox_pred'] | |
num_proposals_per_img = tuple(len(p) for p in proposal_list) | |
rois = rois.split(num_proposals_per_img, 0) | |
cls_score = cls_score.split(num_proposals_per_img, 0) | |
bbox_pred = bbox_pred.split(num_proposals_per_img, 0) | |
ms_scores.append(cls_score) | |
if i < self.num_stages - 1: | |
refine_rois_list = [] | |
for j in range(num_imgs): | |
if rois[j].shape[0] > 0: | |
bbox_label = cls_score[j][:, :-1].argmax(dim=1) | |
refine_rois = bbox_head.regress_by_class( | |
rois[j], bbox_label, bbox_pred[j], img_metas[j]) | |
refine_rois_list.append(refine_rois) | |
rois = torch.cat(refine_rois_list) | |
# average scores of each image by stages | |
cls_score = [ | |
sum([score[i] for score in ms_scores]) / float(len(ms_scores)) | |
for i in range(num_imgs) | |
] | |
# apply bbox post-processing to each image individually | |
det_bboxes = [] | |
det_labels = [] | |
for i in range(num_imgs): | |
det_bbox, det_label = self.bbox_head[-1].get_bboxes( | |
rois[i], | |
cls_score[i], | |
bbox_pred[i], | |
img_shapes[i], | |
scale_factors[i], | |
rescale=rescale, | |
cfg=rcnn_test_cfg) | |
det_bboxes.append(det_bbox) | |
det_labels.append(det_label) | |
bbox_result = [ | |
bbox2result(det_bboxes[i], det_labels[i], | |
self.bbox_head[-1].num_classes) | |
for i in range(num_imgs) | |
] | |
ms_bbox_result['ensemble'] = bbox_result | |
if self.with_mask: | |
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): | |
mask_classes = self.mask_head[-1].num_classes | |
segm_results = [[[] for _ in range(mask_classes)] | |
for _ in range(num_imgs)] | |
else: | |
if rescale and not isinstance(scale_factors[0], float): | |
scale_factors = [ | |
torch.from_numpy(scale_factor).to(det_bboxes[0].device) | |
for scale_factor in scale_factors | |
] | |
_bboxes = [ | |
det_bboxes[i][:, :4] * | |
scale_factors[i] if rescale else det_bboxes[i] | |
for i in range(num_imgs) | |
] | |
mask_rois = bbox2roi(_bboxes) | |
aug_masks = [] | |
mask_roi_extractor = self.mask_roi_extractor[-1] | |
mask_feats = mask_roi_extractor( | |
x[:len(mask_roi_extractor.featmap_strides)], mask_rois) | |
if self.with_semantic and 'mask' in self.semantic_fusion: | |
mask_semantic_feat = self.semantic_roi_extractor( | |
[semantic_feat], mask_rois) | |
mask_feats = mask_feats + mask_semantic_feat | |
last_feat = None | |
num_bbox_per_img = tuple(len(_bbox) for _bbox in _bboxes) | |
for i in range(self.num_stages): | |
mask_head = self.mask_head[i] | |
if self.mask_info_flow: | |
mask_pred, last_feat = mask_head(mask_feats, last_feat) | |
else: | |
mask_pred = mask_head(mask_feats) | |
# split batch mask prediction back to each image | |
mask_pred = mask_pred.split(num_bbox_per_img, 0) | |
aug_masks.append( | |
[mask.sigmoid().cpu().numpy() for mask in mask_pred]) | |
# apply mask post-processing to each image individually | |
segm_results = [] | |
for i in range(num_imgs): | |
if det_bboxes[i].shape[0] == 0: | |
segm_results.append( | |
[[] | |
for _ in range(self.mask_head[-1].num_classes)]) | |
else: | |
aug_mask = [mask[i] for mask in aug_masks] | |
merged_mask = merge_aug_masks( | |
aug_mask, [[img_metas[i]]] * self.num_stages, | |
rcnn_test_cfg) | |
segm_result = self.mask_head[-1].get_seg_masks( | |
merged_mask, _bboxes[i], det_labels[i], | |
rcnn_test_cfg, ori_shapes[i], scale_factors[i], | |
rescale) | |
segm_results.append(segm_result) | |
ms_segm_result['ensemble'] = segm_results | |
if self.with_mask: | |
results = list( | |
zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble'])) | |
else: | |
results = ms_bbox_result['ensemble'] | |
return results | |
def aug_test(self, img_feats, proposal_list, img_metas, rescale=False): | |
"""Test with augmentations. | |
If rescale is False, then returned bboxes and masks will fit the scale | |
of imgs[0]. | |
""" | |
if self.with_semantic: | |
semantic_feats = [ | |
self.semantic_head(feat)[1] for feat in img_feats | |
] | |
else: | |
semantic_feats = [None] * len(img_metas) | |
rcnn_test_cfg = self.test_cfg | |
aug_bboxes = [] | |
aug_scores = [] | |
for x, img_meta, semantic in zip(img_feats, img_metas, semantic_feats): | |
# only one image in the batch | |
img_shape = img_meta[0]['img_shape'] | |
scale_factor = img_meta[0]['scale_factor'] | |
flip = img_meta[0]['flip'] | |
flip_direction = img_meta[0]['flip_direction'] | |
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, | |
scale_factor, flip, flip_direction) | |
# "ms" in variable names means multi-stage | |
ms_scores = [] | |
rois = bbox2roi([proposals]) | |
if rois.shape[0] == 0: | |
# There is no proposal in the single image | |
aug_bboxes.append(rois.new_zeros(0, 4)) | |
aug_scores.append(rois.new_zeros(0, 1)) | |
continue | |
for i in range(self.num_stages): | |
bbox_head = self.bbox_head[i] | |
bbox_results = self._bbox_forward( | |
i, x, rois, semantic_feat=semantic) | |
ms_scores.append(bbox_results['cls_score']) | |
if i < self.num_stages - 1: | |
bbox_label = bbox_results['cls_score'].argmax(dim=1) | |
rois = bbox_head.regress_by_class( | |
rois, bbox_label, bbox_results['bbox_pred'], | |
img_meta[0]) | |
cls_score = sum(ms_scores) / float(len(ms_scores)) | |
bboxes, scores = self.bbox_head[-1].get_bboxes( | |
rois, | |
cls_score, | |
bbox_results['bbox_pred'], | |
img_shape, | |
scale_factor, | |
rescale=False, | |
cfg=None) | |
aug_bboxes.append(bboxes) | |
aug_scores.append(scores) | |
# after merging, bboxes will be rescaled to the original image size | |
merged_bboxes, merged_scores = merge_aug_bboxes( | |
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) | |
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, | |
rcnn_test_cfg.score_thr, | |
rcnn_test_cfg.nms, | |
rcnn_test_cfg.max_per_img) | |
bbox_result = bbox2result(det_bboxes, det_labels, | |
self.bbox_head[-1].num_classes) | |
if self.with_mask: | |
if det_bboxes.shape[0] == 0: | |
segm_result = [[] | |
for _ in range(self.mask_head[-1].num_classes)] | |
else: | |
aug_masks = [] | |
aug_img_metas = [] | |
for x, img_meta, semantic in zip(img_feats, img_metas, | |
semantic_feats): | |
img_shape = img_meta[0]['img_shape'] | |
scale_factor = img_meta[0]['scale_factor'] | |
flip = img_meta[0]['flip'] | |
flip_direction = img_meta[0]['flip_direction'] | |
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, | |
scale_factor, flip, flip_direction) | |
mask_rois = bbox2roi([_bboxes]) | |
mask_feats = self.mask_roi_extractor[-1]( | |
x[:len(self.mask_roi_extractor[-1].featmap_strides)], | |
mask_rois) | |
if self.with_semantic: | |
semantic_feat = semantic | |
mask_semantic_feat = self.semantic_roi_extractor( | |
[semantic_feat], mask_rois) | |
if mask_semantic_feat.shape[-2:] != mask_feats.shape[ | |
-2:]: | |
mask_semantic_feat = F.adaptive_avg_pool2d( | |
mask_semantic_feat, mask_feats.shape[-2:]) | |
mask_feats = mask_feats + mask_semantic_feat | |
last_feat = None | |
for i in range(self.num_stages): | |
mask_head = self.mask_head[i] | |
if self.mask_info_flow: | |
mask_pred, last_feat = mask_head( | |
mask_feats, last_feat) | |
else: | |
mask_pred = mask_head(mask_feats) | |
aug_masks.append(mask_pred.sigmoid().cpu().numpy()) | |
aug_img_metas.append(img_meta) | |
merged_masks = merge_aug_masks(aug_masks, aug_img_metas, | |
self.test_cfg) | |
ori_shape = img_metas[0][0]['ori_shape'] | |
segm_result = self.mask_head[-1].get_seg_masks( | |
merged_masks, | |
det_bboxes, | |
det_labels, | |
rcnn_test_cfg, | |
ori_shape, | |
scale_factor=1.0, | |
rescale=False) | |
return [(bbox_result, segm_result)] | |
else: | |
return [bbox_result] | |