Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# This script consists of several convert functions which | |
# can modify the weights of model in original repo to be | |
# pre-trained weights. | |
from collections import OrderedDict | |
import torch | |
def pvt_convert(ckpt): | |
new_ckpt = OrderedDict() | |
# Process the concat between q linear weights and kv linear weights | |
use_abs_pos_embed = False | |
use_conv_ffn = False | |
for k in ckpt.keys(): | |
if k.startswith('pos_embed'): | |
use_abs_pos_embed = True | |
if k.find('dwconv') >= 0: | |
use_conv_ffn = True | |
for k, v in ckpt.items(): | |
if k.startswith('head'): | |
continue | |
if k.startswith('norm.'): | |
continue | |
if k.startswith('cls_token'): | |
continue | |
if k.startswith('pos_embed'): | |
stage_i = int(k.replace('pos_embed', '')) | |
new_k = k.replace(f'pos_embed{stage_i}', | |
f'layers.{stage_i - 1}.1.0.pos_embed') | |
if stage_i == 4 and v.size(1) == 50: # 1 (cls token) + 7 * 7 | |
new_v = v[:, 1:, :] # remove cls token | |
else: | |
new_v = v | |
elif k.startswith('patch_embed'): | |
stage_i = int(k.split('.')[0].replace('patch_embed', '')) | |
new_k = k.replace(f'patch_embed{stage_i}', | |
f'layers.{stage_i - 1}.0') | |
new_v = v | |
if 'proj.' in new_k: | |
new_k = new_k.replace('proj.', 'projection.') | |
elif k.startswith('block'): | |
stage_i = int(k.split('.')[0].replace('block', '')) | |
layer_i = int(k.split('.')[1]) | |
new_layer_i = layer_i + use_abs_pos_embed | |
new_k = k.replace(f'block{stage_i}.{layer_i}', | |
f'layers.{stage_i - 1}.1.{new_layer_i}') | |
new_v = v | |
if 'attn.q.' in new_k: | |
sub_item_k = k.replace('q.', 'kv.') | |
new_k = new_k.replace('q.', 'attn.in_proj_') | |
new_v = torch.cat([v, ckpt[sub_item_k]], dim=0) | |
elif 'attn.kv.' in new_k: | |
continue | |
elif 'attn.proj.' in new_k: | |
new_k = new_k.replace('proj.', 'attn.out_proj.') | |
elif 'attn.sr.' in new_k: | |
new_k = new_k.replace('sr.', 'sr.') | |
elif 'mlp.' in new_k: | |
string = f'{new_k}-' | |
new_k = new_k.replace('mlp.', 'ffn.layers.') | |
if 'fc1.weight' in new_k or 'fc2.weight' in new_k: | |
new_v = v.reshape((*v.shape, 1, 1)) | |
new_k = new_k.replace('fc1.', '0.') | |
new_k = new_k.replace('dwconv.dwconv.', '1.') | |
if use_conv_ffn: | |
new_k = new_k.replace('fc2.', '4.') | |
else: | |
new_k = new_k.replace('fc2.', '3.') | |
string += f'{new_k} {v.shape}-{new_v.shape}' | |
elif k.startswith('norm'): | |
stage_i = int(k[4]) | |
new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i - 1}.2') | |
new_v = v | |
else: | |
new_k = k | |
new_v = v | |
new_ckpt[new_k] = new_v | |
return new_ckpt | |
def swin_converter(ckpt): | |
new_ckpt = OrderedDict() | |
def correct_unfold_reduction_order(x): | |
out_channel, in_channel = x.shape | |
x = x.reshape(out_channel, 4, in_channel // 4) | |
x = x[:, [0, 2, 1, 3], :].transpose(1, | |
2).reshape(out_channel, in_channel) | |
return x | |
def correct_unfold_norm_order(x): | |
in_channel = x.shape[0] | |
x = x.reshape(4, in_channel // 4) | |
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) | |
return x | |
for k, v in ckpt.items(): | |
if k.startswith('head'): | |
continue | |
elif k.startswith('layers'): | |
new_v = v | |
if 'attn.' in k: | |
new_k = k.replace('attn.', 'attn.w_msa.') | |
elif 'mlp.' in k: | |
if 'mlp.fc1.' in k: | |
new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.') | |
elif 'mlp.fc2.' in k: | |
new_k = k.replace('mlp.fc2.', 'ffn.layers.1.') | |
else: | |
new_k = k.replace('mlp.', 'ffn.') | |
elif 'downsample' in k: | |
new_k = k | |
if 'reduction.' in k: | |
new_v = correct_unfold_reduction_order(v) | |
elif 'norm.' in k: | |
new_v = correct_unfold_norm_order(v) | |
else: | |
new_k = k | |
new_k = new_k.replace('layers', 'stages', 1) | |
elif k.startswith('patch_embed'): | |
new_v = v | |
if 'proj' in k: | |
new_k = k.replace('proj', 'projection') | |
else: | |
new_k = k | |
else: | |
new_v = v | |
new_k = k | |
new_ckpt['backbone.' + new_k] = new_v | |
return new_ckpt | |