|
import gc |
|
|
|
import PIL.Image |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from diffusers import ControlNetModel |
|
from loguru import logger |
|
|
|
from lama_cleaner.model.base import DiffusionInpaintModel |
|
from lama_cleaner.model.utils import torch_gc, get_scheduler |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
class CPUTextEncoderWrapper: |
|
def __init__(self, text_encoder, torch_dtype): |
|
self.config = text_encoder.config |
|
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True) |
|
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) |
|
self.torch_dtype = torch_dtype |
|
del text_encoder |
|
torch_gc() |
|
|
|
def __call__(self, x, **kwargs): |
|
input_device = x.device |
|
return [ |
|
self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0] |
|
.to(input_device) |
|
.to(self.torch_dtype) |
|
] |
|
|
|
@property |
|
def dtype(self): |
|
return self.torch_dtype |
|
|
|
|
|
NAMES_MAP = { |
|
"sd1.5": "runwayml/stable-diffusion-inpainting", |
|
"anything4": "Sanster/anything-4.0-inpainting", |
|
"realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting", |
|
} |
|
|
|
NATIVE_NAMES_MAP = { |
|
"sd1.5": "runwayml/stable-diffusion-v1-5", |
|
"anything4": "andite/anything-v4.0", |
|
"realisticVision1.4": "SG161222/Realistic_Vision_V1.4", |
|
} |
|
|
|
|
|
def make_inpaint_condition(image, image_mask): |
|
""" |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
""" |
|
image = image.astype(np.float32) / 255.0 |
|
image[image_mask[:, :, -1] > 128] = -1.0 |
|
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
return image |
|
|
|
|
|
def load_from_local_model( |
|
local_model_path, torch_dtype, controlnet, pipe_class, is_native_control_inpaint |
|
): |
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( |
|
download_from_original_stable_diffusion_ckpt, |
|
) |
|
|
|
logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline") |
|
|
|
try: |
|
pipe = download_from_original_stable_diffusion_ckpt( |
|
local_model_path, |
|
num_in_channels=4 if is_native_control_inpaint else 9, |
|
from_safetensors=local_model_path.endswith("safetensors"), |
|
device="cpu", |
|
load_safety_checker=False, |
|
) |
|
except Exception as e: |
|
err_msg = str(e) |
|
logger.exception(e) |
|
if is_native_control_inpaint and "[320, 9, 3, 3]" in err_msg: |
|
logger.error( |
|
"control_v11p_sd15_inpaint method requires normal SD model, not inpainting SD model" |
|
) |
|
if not is_native_control_inpaint and "[320, 4, 3, 3]" in err_msg: |
|
logger.error( |
|
f"{controlnet.config['_name_or_path']} method requires inpainting SD model, " |
|
f"you can convert any SD model to inpainting model in AUTO1111: \n" |
|
f"https://www.reddit.com/r/StableDiffusion/comments/zyi24j/how_to_turn_any_model_into_an_inpainting_model/" |
|
) |
|
exit(-1) |
|
|
|
inpaint_pipe = pipe_class( |
|
vae=pipe.vae, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
unet=pipe.unet, |
|
controlnet=controlnet, |
|
scheduler=pipe.scheduler, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False, |
|
) |
|
|
|
del pipe |
|
gc.collect() |
|
return inpaint_pipe.to(torch_dtype=torch_dtype) |
|
|
|
|
|
class ControlNet(DiffusionInpaintModel): |
|
name = "controlnet" |
|
pad_mod = 8 |
|
min_size = 512 |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
fp16 = not kwargs.get("no_half", False) |
|
|
|
model_kwargs = { |
|
"local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"]) |
|
} |
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): |
|
logger.info("Disable Stable Diffusion Model NSFW checker") |
|
model_kwargs.update( |
|
dict( |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False, |
|
) |
|
) |
|
|
|
use_gpu = device == torch.device("cuda") and torch.cuda.is_available() |
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 |
|
|
|
sd_controlnet_method = kwargs["sd_controlnet_method"] |
|
self.sd_controlnet_method = sd_controlnet_method |
|
|
|
if sd_controlnet_method == "control_v11p_sd15_inpaint": |
|
from diffusers import StableDiffusionControlNetPipeline as PipeClass |
|
|
|
self.is_native_control_inpaint = True |
|
else: |
|
from .pipeline import StableDiffusionControlNetInpaintPipeline as PipeClass |
|
|
|
self.is_native_control_inpaint = False |
|
|
|
if self.is_native_control_inpaint: |
|
model_id = NATIVE_NAMES_MAP[kwargs["name"]] |
|
else: |
|
model_id = NAMES_MAP[kwargs["name"]] |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
f"lllyasviel/{sd_controlnet_method}", torch_dtype=torch_dtype |
|
) |
|
self.is_local_sd_model = False |
|
if kwargs.get("sd_local_model_path", None): |
|
self.is_local_sd_model = True |
|
self.model = load_from_local_model( |
|
kwargs["sd_local_model_path"], |
|
torch_dtype=torch_dtype, |
|
controlnet=controlnet, |
|
pipe_class=PipeClass, |
|
is_native_control_inpaint=self.is_native_control_inpaint, |
|
) |
|
else: |
|
self.model = PipeClass.from_pretrained( |
|
model_id, |
|
controlnet=controlnet, |
|
revision="fp16" if use_gpu and fp16 else "main", |
|
torch_dtype=torch_dtype, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
self.model.enable_attention_slicing() |
|
|
|
if kwargs.get("enable_xformers", False): |
|
self.model.enable_xformers_memory_efficient_attention() |
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu: |
|
logger.info("Enable sequential cpu offload") |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
if kwargs["sd_cpu_textencoder"]: |
|
logger.info("Run Stable Diffusion TextEncoder on CPU") |
|
self.model.text_encoder = CPUTextEncoderWrapper( |
|
self.model.text_encoder, torch_dtype |
|
) |
|
|
|
self.callback = kwargs.pop("callback", None) |
|
|
|
def forward(self, image, mask, config: Config): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
scheduler_config = self.model.scheduler.config |
|
scheduler = get_scheduler(config.sd_sampler, scheduler_config) |
|
self.model.scheduler = scheduler |
|
|
|
if config.sd_mask_blur != 0: |
|
k = 2 * config.sd_mask_blur + 1 |
|
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] |
|
|
|
img_h, img_w = image.shape[:2] |
|
|
|
if self.is_native_control_inpaint: |
|
control_image = make_inpaint_condition(image, mask) |
|
output = self.model( |
|
prompt=config.prompt, |
|
image=control_image, |
|
height=img_h, |
|
width=img_w, |
|
num_inference_steps=config.sd_steps, |
|
guidance_scale=config.sd_guidance_scale, |
|
controlnet_conditioning_scale=config.controlnet_conditioning_scale, |
|
negative_prompt=config.negative_prompt, |
|
generator=torch.manual_seed(config.sd_seed), |
|
output_type="np.array", |
|
callback=self.callback, |
|
).images[0] |
|
else: |
|
if "canny" in self.sd_controlnet_method: |
|
canny_image = cv2.Canny(image, 100, 200) |
|
canny_image = canny_image[:, :, None] |
|
canny_image = np.concatenate( |
|
[canny_image, canny_image, canny_image], axis=2 |
|
) |
|
canny_image = PIL.Image.fromarray(canny_image) |
|
control_image = canny_image |
|
elif "openpose" in self.sd_controlnet_method: |
|
from controlnet_aux import OpenposeDetector |
|
|
|
processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") |
|
control_image = processor(image, hand_and_face=True) |
|
elif "depth" in self.sd_controlnet_method: |
|
from transformers import pipeline |
|
|
|
depth_estimator = pipeline("depth-estimation") |
|
depth_image = depth_estimator(PIL.Image.fromarray(image))["depth"] |
|
depth_image = np.array(depth_image) |
|
depth_image = depth_image[:, :, None] |
|
depth_image = np.concatenate( |
|
[depth_image, depth_image, depth_image], axis=2 |
|
) |
|
control_image = PIL.Image.fromarray(depth_image) |
|
else: |
|
raise NotImplementedError( |
|
f"{self.sd_controlnet_method} not implemented" |
|
) |
|
|
|
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L") |
|
image = PIL.Image.fromarray(image) |
|
|
|
output = self.model( |
|
image=image, |
|
control_image=control_image, |
|
prompt=config.prompt, |
|
negative_prompt=config.negative_prompt, |
|
mask_image=mask_image, |
|
num_inference_steps=config.sd_steps, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np.array", |
|
callback=self.callback, |
|
height=img_h, |
|
width=img_w, |
|
generator=torch.manual_seed(config.sd_seed), |
|
controlnet_conditioning_scale=config.controlnet_conditioning_scale, |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|
|
def forward_post_process(self, result, image, mask, config): |
|
if config.sd_match_histograms: |
|
result = self._match_histograms(result, image[:, :, ::-1], mask) |
|
|
|
if config.sd_mask_blur != 0: |
|
k = 2 * config.sd_mask_blur + 1 |
|
mask = cv2.GaussianBlur(mask, (k, k), 0) |
|
return result, image, mask |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
|
|
return True |
|
|