faceplugin's picture
Update model
0367344
raw
history blame
13.2 kB
#!/usr/bin/env python
# encoding: utf-8
"""
@author: MingDong
@file: train.py
@desc: train script for deep face recognition
"""
import os
import argparse
import time
from datetime import datetime
import numpy as np
import torch.utils.data
import torch.optim as optim
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
from torch.nn import DataParallel
from model.mobilefacenet import MobileFaceNet
from model.resnet import ResNet50
from model.cbam import CBAMResNet
from model.attention import ResidualAttentionNet_56, ResidualAttentionNet_92
from margin.ArcMarginProduct import ArcMarginProduct
from margin.MultiMarginProduct import MultiMarginProduct
from margin.CosineMarginProduct import CosineMarginProduct
from margin.SphereMarginProduct import SphereMarginProduct
from margin.InnerProduct import InnerProduct
from utils.visualize import Visualizer
from utils.logging import init_log
from dataloader.casia_webface import CASIAWebFace
from dataloader.lfw import LFW
from dataloader.agedb import AgeDB30
from dataloader.cfp import CFP_FP
from eval_lfw import evaluation_10_fold, getFeatureFromTorch
def train(args):
# gpu init
multi_gpus = False
if len(args.gpus.split(',')) > 1:
multi_gpus = True
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# log init
save_dir = os.path.join(args.save_dir, args.model_pre + args.backbone.upper() + '_' + datetime.now().strftime('%Y%m%d_%H%M%S'))
if os.path.exists(save_dir):
raise NameError('model dir exists!')
os.makedirs(save_dir)
logging = init_log(save_dir)
_print = logging.info
# dataloader loader
transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
# validation dataloader
trainset = CASIAWebFace(args.train_root, args.train_file_list, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
shuffle=True, num_workers=4, drop_last=False)
# test dataloader
lfwdataset = LFW(args.lfw_test_root, args.lfw_file_list, transform=transform)
lfwloader = torch.utils.data.DataLoader(lfwdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
agedbdataset = AgeDB30(args.agedb_test_root, args.agedb_file_list, transform=transform)
agedbloader = torch.utils.data.DataLoader(agedbdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
cfpfpdataset = CFP_FP(args.cfpfp_test_root, args.cfpfp_file_list, transform=transform)
cfpfploader = torch.utils.data.DataLoader(cfpfpdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
# define backbone and margin layer
if args.backbone == 'MobileFace':
net = MobileFaceNet(feature_dim=args.feature_dim)
elif args.backbone == 'Res50':
net = ResNet50()
elif args.backbone == 'Res50_IR':
net = CBAMResNet(50, feature_dim=args.feature_dim, mode='ir')
elif args.backbone == 'SERes50_IR':
net = CBAMResNet(50, feature_dim=args.feature_dim, mode='ir_se')
elif args.backbone == 'Res100_IR':
net = CBAMResNet(100, feature_dim=args.feature_dim, mode='ir')
elif args.backbone == 'SERes100_IR':
net = CBAMResNet(100, feature_dim=args.feature_dim, mode='ir_se')
elif args.backbone == 'Attention_56':
net = ResidualAttentionNet_56(feature_dim=args.feature_dim)
elif args.backbone == 'Attention_92':
net = ResidualAttentionNet_92(feature_dim=args.feature_dim)
else:
print(args.backbone, ' is not available!')
if args.margin_type == 'ArcFace':
margin = ArcMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'MultiMargin':
margin = MultiMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'CosFace':
margin = CosineMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'Softmax':
margin = InnerProduct(args.feature_dim, trainset.class_nums)
elif args.margin_type == 'SphereFace':
margin = SphereMarginProduct(args.feature_dim, trainset.class_nums)
else:
print(args.margin_type, 'is not available!')
if args.resume:
print('resume the model parameters from: ', args.net_path, args.margin_path)
net.load_state_dict(torch.load(args.net_path)['net_state_dict'])
margin.load_state_dict(torch.load(args.margin_path)['net_state_dict'])
# define optimizers for different layer
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer_ft = optim.SGD([
{'params': net.parameters(), 'weight_decay': 5e-4},
{'params': margin.parameters(), 'weight_decay': 5e-4}
], lr=0.1, momentum=0.9, nesterov=True)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer_ft, milestones=[6, 11, 16], gamma=0.1)
if multi_gpus:
net = DataParallel(net).to(device)
margin = DataParallel(margin).to(device)
else:
net = net.to(device)
margin = margin.to(device)
best_lfw_acc = 0.0
best_lfw_iters = 0
best_agedb30_acc = 0.0
best_agedb30_iters = 0
best_cfp_fp_acc = 0.0
best_cfp_fp_iters = 0
total_iters = 0
vis = Visualizer(env=args.model_pre + args.backbone)
for epoch in range(1, args.total_epoch + 1):
# train model
_print(f"Train Epoch: {epoch}/{args.total_epoch} ...")
net.train()
since = time.time()
for data in trainloader:
img, label = data[0].to(device), data[1].to(device)
optimizer_ft.zero_grad()
raw_logits = net(img)
output = margin(raw_logits, label)
total_loss = criterion(output, label)
total_loss.backward()
optimizer_ft.step()
total_iters += 1
# print train information
if total_iters % 100 == 0:
# current training accuracy
_, predict = torch.max(output.data, 1)
total = label.size(0)
correct = (np.array(predict.cpu()) == np.array(label.data.cpu())).sum()
time_cur = (time.time() - since) / 100
since = time.time()
vis.plot_curves({'softmax loss': total_loss.item()}, iters=total_iters, title='train loss',
xlabel='iters', ylabel='train loss')
vis.plot_curves({'train accuracy': correct / total}, iters=total_iters, title='train accuracy', xlabel='iters',
ylabel='train accuracy')
_print(f"Iters: {total_iters:0>6d}/[{epoch:0>2d}], loss: {total_loss.item():.4f}, train_accuracy: "
f"{correct/total:.4f}, time: {time_cur:.2f} s/iter, learning rate: {exp_lr_scheduler.get_lr()[0]}")
# save model
if total_iters % args.save_freq == 0:
msg = f'Saving checkpoint: {total_iters}'
_print(msg)
if multi_gpus:
net_state_dict = net.module.state_dict()
margin_state_dict = margin.module.state_dict()
else:
net_state_dict = net.state_dict()
margin_state_dict = margin.state_dict()
if not os.path.exists(save_dir):
os.mkdir(save_dir)
torch.save({
'iters': total_iters,
'net_state_dict': net_state_dict},
os.path.join(save_dir, f'Iter_{total_iters:06}_net.ckpt'))
torch.save({
'iters': total_iters,
'net_state_dict': margin_state_dict},
os.path.join(save_dir, f'Iter_{total_iters:06}_margin.ckpt'))
# test accuracy
if total_iters % args.test_freq == 0:
# test model on lfw
net.eval()
getFeatureFromTorch('result/cur_lfw_result.mat', net, device, lfwdataset, lfwloader)
lfw_accs = evaluation_10_fold('result/cur_lfw_result.mat')
_print(f'LFW Ave Accuracy: {np.mean(lfw_accs) * 100:.4f}')
if best_lfw_acc <= np.mean(lfw_accs) * 100:
best_lfw_acc = np.mean(lfw_accs) * 100
best_lfw_iters = total_iters
# test model on AgeDB30
getFeatureFromTorch('result/cur_agedb30_result.mat', net, device, agedbdataset, agedbloader)
age_accs = evaluation_10_fold('result/cur_agedb30_result.mat')
_print(f'AgeDB-30 Ave Accuracy: {np.mean(age_accs) * 100:.4f}')
if best_agedb30_acc <= np.mean(age_accs) * 100:
best_agedb30_acc = np.mean(age_accs) * 100
best_agedb30_iters = total_iters
# test model on CFP-FP
getFeatureFromTorch('result/cur_cfpfp_result.mat', net, device, cfpfpdataset, cfpfploader)
cfp_accs = evaluation_10_fold('result/cur_cfpfp_result.mat')
_print(f'CFP-FP Ave Accuracy: {np.mean(cfp_accs) * 100:.4f}')
if best_cfp_fp_acc <= np.mean(cfp_accs) * 100:
best_cfp_fp_acc = np.mean(cfp_accs) * 100
best_cfp_fp_iters = total_iters
_print(f'Current Best Accuracy: LFW: {best_lfw_acc:.4f} in iters: {best_lfw_iters}, AgeDB-30: {best_agedb30_acc:.4f} in iters: '
f'{best_agedb30_iters} and CFP-FP: {best_cfp_fp_acc:.4f} in iters: {best_cfp_fp_iters}')
vis.plot_curves({'lfw': np.mean(lfw_accs), 'agedb-30': np.mean(age_accs), 'cfp-fp': np.mean(cfp_accs)}, iters=total_iters,
title='test accuracy', xlabel='iters', ylabel='test accuracy')
net.train()
exp_lr_scheduler.step()
_print(f'Finally Best Accuracy: LFW: {best_lfw_acc:.4f} in iters: {best_lfw_iters}, '
f'AgeDB-30: {best_agedb30_acc:.4f} in iters: {best_agedb30_iters} and CFP-FP: {best_cfp_fp_acc:.4f} in iters: {best_cfp_fp_iters}')
print('finishing training')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch for deep face recognition')
parser.add_argument('--train_root', type=str, default='/datasets/public2/upload/faces_emore_images', help='train image root')
parser.add_argument('--train_file_list', type=str, default='/datasets/public2/upload/faces_emore/faces_emore.list', help='train list')
parser.add_argument('--lfw_test_root', type=str, default='/datasets/public1/upload/datasets/lfw', help='lfw image root')
parser.add_argument('--lfw_file_list', type=str, default='/datasets/public1/upload/datasets/lfw_pair.txt', help='lfw pair file list')
parser.add_argument('--agedb_test_root', type=str, default='/datasets/public1/upload/datasets/agedb_30', help='agedb image root')
parser.add_argument('--agedb_file_list', type=str, default='/datasets/public1/upload/datasets/agedb_30_pair.txt', help='agedb pair file list')
parser.add_argument('--cfpfp_test_root', type=str, default='/datasets/public1/upload/datasets/cfp_fp', help='agedb image root')
parser.add_argument('--cfpfp_file_list', type=str, default='/datasets/public1/upload/datasets/cfp_fp_pair.txt', help='agedb pair file list')
parser.add_argument('--backbone', type=str, default='Res50', help='MobileFace, Res50_IR, SERes50_IR, Res100_IR, SERes100_IR, Attention_56, Attention_92')
parser.add_argument('--margin_type', type=str, default='ArcFace', help='ArcFace, CosFace, SphereFace, MultiMargin, Softmax')
parser.add_argument('--feature_dim', type=int, default=512, help='feature dimension, 128 or 512')
parser.add_argument('--scale_size', type=float, default=32.0, help='scale size')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--total_epoch', type=int, default=18, help='total epochs')
parser.add_argument('--save_freq', type=int, default=10000, help='save frequency')
parser.add_argument('--test_freq', type=int, default=10000, help='test frequency')
parser.add_argument('--resume', type=int, default=True, help='resume model')
parser.add_argument('--net_path', type=str, default='./checkpoints/resnet50_Iter_486000_net.ckpt', help='resume model')
parser.add_argument('--margin_path', type=str, default='./checkpoints/resnet50_Iter_48600_margin.ckpt', help='resume model')
parser.add_argument('--save_dir', type=str, default='./checkpoints', help='model save dir')
parser.add_argument('--model_pre', type=str, default='Res50_', help='model prefix')
parser.add_argument('--gpus', type=str, default='0', help='model prefix')
args = parser.parse_args()
train(args)