File size: 909 Bytes
89a6e11 b43955f 89a6e11 b43955f 4546b35 b43955f 4546b35 b43955f 4546b35 b43955f 4546b35 b43955f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
import onnxruntime as rt
from transformers import AutoTokenizer
import torch, json
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
with open("label_types_encoded.json", "r") as fp:
encode_genre_types = json.load(fp)
genres = list(encode_genre_types.keys())
inf_session = rt.InferenceSession('food-classifier-quantized.onnx')
input_name = inf_session.get_inputs()[0].name
output_name = inf_session.get_outputs()[0].name
def classify_food_Ingredient(article):
input_ids = tokenizer(article)['input_ids'][:512]
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
logits = torch.FloatTensor(logits)
probs = torch.sigmoid(logits)[0]
return dict(zip(genres, map(float, probs)))
label = gr.outputs.Label(num_top_classes=6)
iface = gr.Interface(fn=classify_food_Ingredient, inputs="text", outputs=label)
iface.launch(inline=False) |