File size: 909 Bytes
89a6e11
b43955f
 
 
89a6e11
 
b43955f
 
 
 
 
4546b35
 
b43955f
 
 
 
 
4546b35
b43955f
 
 
 
4546b35
b43955f
 
 
4546b35
b43955f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
import onnxruntime as rt
from transformers import AutoTokenizer
import torch, json


tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")

with open("label_types_encoded.json", "r") as fp:
    encode_genre_types = json.load(fp)

genres = list(encode_genre_types.keys())

inf_session = rt.InferenceSession('food-classifier-quantized.onnx')
input_name = inf_session.get_inputs()[0].name
output_name = inf_session.get_outputs()[0].name


def classify_food_Ingredient(article):
    input_ids = tokenizer(article)['input_ids'][:512]
    logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
    logits = torch.FloatTensor(logits)
    probs = torch.sigmoid(logits)[0]
    return dict(zip(genres, map(float, probs)))


label = gr.outputs.Label(num_top_classes=6)
iface = gr.Interface(fn=classify_food_Ingredient, inputs="text", outputs=label)
iface.launch(inline=False)