|
import gradio as gr |
|
import onnxruntime as rt |
|
from transformers import AutoTokenizer |
|
import torch, json |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") |
|
|
|
with open("label_types_encoded.json", "r") as fp: |
|
encode_genre_types = json.load(fp) |
|
|
|
genres = list(encode_genre_types.keys()) |
|
|
|
inf_session = rt.InferenceSession('food-classifier-quantized.onnx') |
|
input_name = inf_session.get_inputs()[0].name |
|
output_name = inf_session.get_outputs()[0].name |
|
|
|
|
|
def classify_food_Ingredient(article): |
|
input_ids = tokenizer(article)['input_ids'][:512] |
|
logits = inf_session.run([output_name], {input_name: [input_ids]})[0] |
|
logits = torch.FloatTensor(logits) |
|
probs = torch.sigmoid(logits)[0] |
|
return dict(zip(genres, map(float, probs))) |
|
|
|
|
|
label = gr.outputs.Label(num_top_classes=6) |
|
iface = gr.Interface(fn=classify_food_Ingredient, inputs="text", outputs=label) |
|
iface.launch(inline=False) |