OLA-VLM / ola_vlm /model /multi_enc_llava_arch.py
praeclarumjj3's picture
:zap: add code
9fa3d89
raw
history blame
29.2 kB
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector
from ola_vlm.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from ola_vlm.mm_utils import get_anyres_image_grid_shape
import numpy as np
from ola_vlm.model.aux_heads.sam_utils.build_sam import sam_model_registry
from ola_vlm.model.aux_heads.sam_utils.automatic_mask_generator import SamAutomaticMaskGenerator
from ola_vlm.model.aux_heads.depth_anything_v2.dpt import DepthAnythingV2
from diffusers import StableUnCLIPImg2ImgPipeline
import torch.nn.functional as F
import copy
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead, OneFormerSegHead, OneFormerTaskTokenSegHead
from transformers import OneFormerProcessor, OneFormerConfig
# import torch
from torchvision import transforms
from PIL import Image
def build_mlp(in_hidden_size, hidden_size):
modules = [nn.Linear(in_hidden_size, hidden_size)]
modules.append(nn.GELU())
modules.append(nn.Linear(hidden_size, hidden_size))
return nn.Sequential(*modules)
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
class MultiEncLlavaMetaModel:
def __init__(self, config):
super(MultiEncLlavaMetaModel, self).__init__(config)
self.attn_mask_type = 'causal'
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=False)
self.mm_projector = build_vision_projector(config)
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
self.aggr = getattr(config, 'aggregation', "features")
if self.aggr == "tokens":
depth_config = copy.deepcopy(config)
depth_config.mm_hidden_size = config.depth_dim
self.depth_projector = build_vision_projector(depth_config)
gen_config = copy.deepcopy(config)
gen_config.mm_hidden_size = config.gen_dim
self.gen_projector = build_vision_projector(gen_config)
seg_config = copy.deepcopy(config)
seg_config.mm_hidden_size = config.seg_dim
self.seg_projector = build_vision_projector(seg_config)
self.init_encoders(config)
self.set_attn_mask_type(config)
def init_encoders(self, config):
encoder = 'vitl' # or 'vits', 'vitb', 'vitg'
self.dav2_model = DepthAnythingV2(**model_configs[encoder])
self.dav2_model.load_state_dict(torch.load(config.depth_estimator, map_location='cpu'))
self.dav2_model.eval()
self.aggr = getattr(config, 'aggregation', "features")
try:
self.dav2_model = self.dav2_model.cuda()
except:
pass
self.pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(config.image_generator, torch_dtype=torch.float16, variant="fp16")
self.seg_teacher = getattr(config, "seg_teacher", "oneformer")
if self.seg_teacher == "sam":
self.sam = sam_model_registry["vit_l"](checkpoint=self.config.image_segmentor)
try:
self.sam = self.sam.to("cuda")
except:
pass
for p in self.sam.parameters():
p.requires_grad = False
self.mask_generator = SamAutomaticMaskGenerator(self.sam)
elif self.seg_teacher == "oneformer":
self.oneformer_processor = OneFormerProcessor.from_pretrained(config.image_segmentor)
self.oneformer = OneFormerHead.from_pretrained(config.image_segmentor)
for p in self.oneformer.parameters():
p.requires_grad = False
try:
self.oneformer = self.oneformer.to("cuda")
except:
pass
self.mask_generator = None
def set_attn_mask_type(self, config):
if hasattr(config, 'attn_mask_type'):
self.attn_mask_type = config.attn_mask_type
else:
self.attn_mask_type = 'causal'
print(f"Setting attn_mask_type to {self.attn_mask_type}")
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
mm_patch_merge_type = model_args.mm_patch_merge_type
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.mm_patch_merge_type = mm_patch_merge_type
if getattr(self, 'mm_projector', None) is None:
if getattr(model_args, 'aggregation', "features") == "features":
self.config.mm_hidden_size = self.config.mm_hidden_size + model_args.depth_dim + model_args.seg_dim + model_args.gen_dim
self.mm_projector = build_vision_projector(self.config)
if getattr(model_args, 'aggregation', "features") == "tokens":
depth_config = copy.deepcopy(self.config)
depth_config.mm_hidden_size = model_args.depth_dim
self.depth_projector = build_vision_projector(depth_config)
gen_config = copy.deepcopy(self.config)
gen_config.mm_hidden_size = model_args.gen_dim
self.gen_projector = build_vision_projector(gen_config)
seg_config = copy.deepcopy(self.config)
seg_config.mm_hidden_size = model_args.seg_dim
self.seg_projector = build_vision_projector(seg_config)
if 'unpad' in mm_patch_merge_type:
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of PIL image (width, height).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding:current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding:current_width - padding]
return unpadded_tensor
def unpad_prep_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of PIL image (width, height).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
mode = "height"
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding:current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding:current_width - padding]
mode = "width"
return unpadded_tensor, mode, padding
def reverse_convnext_preprocess(preprocessed_tensor):
unnormalize = transforms.Normalize(mean=[-0.5/0.5, -0.5/0.5, -0.5/0.5], std=[1/0.5, 1/0.5, 1/0.5])
image_tensor = torch.clamp(unnormalize(preprocessed_tensor), 0, 1)
return transforms.ToPILImage()(image_tensor)
class MultiEncLlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
@property
def attn_mask_type(self):
return self.get_model().attn_mask_type
def get_seg_targets(self, pil_images, preds):
def _get_feats(img, mask_generator):
if self.get_model().seg_teacher == "oneformer":
img = img.resize((768, 768))
inputs = self.get_model().oneformer_processor(img, ["panoptic"], return_tensors="pt")
self.get_model().oneformer = self.get_model().oneformer.to(preds.device, preds.dtype)
inputs["pixel_values"] = inputs["pixel_values"].to(preds.device, preds.dtype)
with torch.no_grad():
feats = self.get_model().oneformer.forward_features(**inputs)
else:
img = np.array(img)
mask_generator.predictor.set_image(img, dtype=preds.dtype)
feats = mask_generator.predictor.features
mask_generator.predictor.reset_image()
feats = F.interpolate(feats, (24, 24), mode="bicubic", align_corners=False)
feats = feats.permute(0, 2, 3, 1)
feats = feats.reshape(1, -1, feats.shape[-1])
return feats
seg_targets = []
for img in pil_images:
feat = _get_feats(img, self.get_model().mask_generator)
seg_targets.append(feat)
seg_targets = torch.stack(seg_targets, dim=0).squeeze(1)
return seg_targets
def get_dav2_feats(self, pil_images, device):
self.get_model().dav2_model = self.get_model().dav2_model.to(device)
dav2_feats = []
for img in pil_images:
img = img.resize((336, 336))
img = np.array(img)
feat = self.get_model().dav2_model.infer_image(img, is_dsg=True)
feat = (feat[0][0] + feat[1][0] + feat[2][0] + feat[3][0]) / 4
dav2_feats.append(feat.to(device))
dav2_feats = torch.stack(dav2_feats, dim=0).squeeze(1)
return dav2_feats
def get_gen_feats(self, pil_images, device):
gen_feats = []
self.get_model().pipe.image_encoder = self.get_model().pipe.image_encoder.to(device)
for img in pil_images:
clip_ims = self.get_model().pipe.feature_extractor(images=img, return_tensors="pt").pixel_values.to(device)
feat = self.get_model().pipe.image_encoder(clip_ims).image_embeds
gen_feats.append(feat)
gen_feats = torch.stack(gen_feats, dim=0)
return gen_feats
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images).to(images.dtype).to(images.device)
if self.get_model().aggr == "tokens":
image_features = self.get_model().mm_projector(image_features)
pil_images = [reverse_convnext_preprocess(images[i].float()) for i in range(images.shape[0])]
depth_feats = self.get_dav2_feats(pil_images, image_features.device).to(image_features.dtype)
if self.get_model().aggr == "tokens":
depth_feats = depth_feats.permute(0, 2, 1)
depth_feats = F.avg_pool1d(depth_feats, kernel_size=72)
depth_feats = depth_feats.permute(0, 2, 1)
depth_feats = self.get_model().depth_projector(depth_feats)
gen_feats = self.get_gen_feats(pil_images, image_features.device).to(image_features.dtype)
if self.get_model().aggr == "tokens":
gen_feats = gen_feats.repeat(1, 8, 1)
gen_feats = self.get_model().gen_projector(gen_feats)
else:
gen_feats = gen_feats.repeat(1, image_features.shape[1], 1)
seg_feats = self.get_seg_targets(pil_images, image_features).to(image_features.dtype)
if self.get_model().aggr == "tokens":
seg_feats = seg_feats.permute(0, 2, 1)
seg_feats = F.avg_pool1d(seg_feats, kernel_size=72)
seg_feats = seg_feats.permute(0, 2, 1)
seg_feats = self.get_model().seg_projector(seg_feats)
if self.get_model().aggr == "tokens":
# image_features = torch.cat([image_features, depth_feats, seg_feats, gen_feats], dim=1)
image_features = torch.cat([image_features, gen_feats, depth_feats, seg_feats], dim=1)
else:
# image_features = torch.cat([image_features, depth_feats, seg_feats, gen_feats], dim=2)
image_features = torch.cat([image_features, gen_feats, depth_feats, seg_feats], dim=2)
image_features = self.get_model().mm_projector(image_features)
return image_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images, image_sizes=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels, None
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
if mm_patch_merge_type == 'flat':
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith('spatial'):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if image_aspect_ratio == 'anyres':
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
raise NotImplementedError
if 'unpad' in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat((
image_feature,
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
if 'unpad' in mm_patch_merge_type:
image_feature = torch.cat((
image_feature,
self.model.image_newline[None].to(image_feature.device)
), dim=0)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
image_features = self.encode_images(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
do_sample = False
else:
do_sample = True
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
block_indices = [None] * len(input_ids)
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
num_tokens = 0
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
num_tokens += cur_input_embeds_no_im[i].shape[0]
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
num_tokens += cur_image_features.shape[0]
if self.attn_mask_type == "block-causal":
indices = ["block-causal", image_token_indices[1], num_tokens]
block_indices[batch_idx] = indices
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, block_indices
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False