Spaces:
Running
on
Zero
Running
on
Zero
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# FFN | |
def FeedForward(dim, mult=4): | |
inner_dim = int(dim * mult) | |
return nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, inner_dim, bias=False), | |
nn.GELU(), | |
nn.Linear(inner_dim, dim, bias=False), | |
) | |
def reshape_tensor(x, heads): | |
bs, length, width = x.shape | |
#(bs, length, width) --> (bs, length, n_heads, dim_per_head) | |
x = x.view(bs, length, heads, -1) | |
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) | |
x = x.transpose(1, 2) | |
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) | |
x = x.reshape(bs, heads, length, -1) | |
return x | |
class PerceiverAttention(nn.Module): | |
def __init__(self, *, dim, dim_head=64, heads=8): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.dim_head = dim_head | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x, latents): | |
""" | |
Args: | |
x (torch.Tensor): image features | |
shape (b, n1, D) | |
latent (torch.Tensor): latent features | |
shape (b, n2, D) | |
""" | |
x = self.norm1(x) | |
latents = self.norm2(latents) | |
b, l, _ = latents.shape | |
q = self.to_q(latents) | |
kv_input = torch.cat((x, latents), dim=-2) | |
k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
q = reshape_tensor(q, self.heads) | |
k = reshape_tensor(k, self.heads) | |
v = reshape_tensor(v, self.heads) | |
# attention | |
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
out = weight @ v | |
out = out.permute(0, 2, 1, 3).reshape(b, l, -1) | |
return self.to_out(out) | |
class AttentionPool2d(nn.Module): | |
def __init__(self, seq_len: int, embed_dim: int, num_heads: int, output_dim: int = None): | |
super().__init__() | |
self.positional_embedding = nn.Parameter(torch.randn(seq_len + 1, embed_dim) / embed_dim**0.5) | |
self.k_proj = nn.Linear(embed_dim, embed_dim) | |
self.q_proj = nn.Linear(embed_dim, embed_dim) | |
self.v_proj = nn.Linear(embed_dim, embed_dim) | |
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |
self.num_heads = num_heads | |
def forward(self, x, return_all_tokens=False): | |
# x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC | |
x = x.permute(1, 0, 2) # (N(HW)C) => (HW)NC | |
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC | |
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC | |
x, _ = F.multi_head_attention_forward(query=x, | |
key=x, | |
value=x, | |
embed_dim_to_check=x.shape[-1], | |
num_heads=self.num_heads, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
in_proj_weight=None, | |
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), | |
bias_k=None, | |
bias_v=None, | |
add_zero_attn=False, | |
dropout_p=0, | |
out_proj_weight=self.c_proj.weight, | |
out_proj_bias=self.c_proj.bias, | |
use_separate_proj_weight=True, | |
training=self.training, | |
need_weights=False) | |
if return_all_tokens: | |
return x | |
else: | |
return x[0] | |
class Resampler(nn.Module): | |
def __init__( | |
self, | |
dim=1024, | |
depth=8, | |
dim_head=64, | |
heads=16, | |
num_queries=8, | |
embedding_dim=768, | |
output_dim=1024, | |
ff_mult=4, | |
): | |
super().__init__() | |
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
self.proj_in = nn.Linear(embedding_dim, dim) | |
self.proj_out = nn.Linear(dim, output_dim) | |
self.norm_out = nn.LayerNorm(output_dim) | |
self.in_dim = dim | |
self.out_dim = output_dim | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList([ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
FeedForward(dim=dim, mult=ff_mult), | |
])) | |
def forward(self, x): | |
latents = self.latents.repeat(x.size(0), 1, 1) | |
x = self.proj_in(x) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
latents = self.proj_out(latents) | |
output_embeds = self.norm_out(latents) | |
return output_embeds | |
class TaskTokenResampler(nn.Module): | |
def __init__( | |
self, | |
dim=1024, | |
depth=8, | |
dim_head=64, | |
num_queries=8, | |
heads=16, | |
embedding_dim=768, | |
output_dim=1024, | |
ff_mult=4, | |
): | |
super().__init__() | |
# self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
# self.task_w = nn.Parameter(torch.tensor(0.0)) | |
self.proj_in = nn.Linear(embedding_dim, dim) | |
self.num_queries = num_queries | |
self.dim = dim | |
self.proj_out = nn.Linear(dim, output_dim) | |
self.norm_out = nn.LayerNorm(output_dim) | |
self.in_dim = dim | |
self.out_dim = output_dim | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList([ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
FeedForward(dim=dim, mult=ff_mult), | |
])) | |
def forward(self, x, latents): | |
if latents is None: | |
latents = torch.zeros(x.size[0], self.num_queries, self.dim) | |
else: | |
if latents.shape[1] != self.num_queries: | |
if self.num_queries > 1 and self.num_queries % latents.shape[1] == 0: | |
n = latents.shape[1] | |
latents = latents.repeat(1, self.num_queries // n, 1) | |
else: | |
latents = latents.mean(dim=1, keepdim=True).repeat(1, self.num_queries, 1) | |
latents = self.proj_in(latents) | |
x = self.proj_in(x) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
latents = self.proj_out(latents) | |
output_embeds = self.norm_out(latents) | |
return output_embeds | |
class ResamplerXL(nn.Module): | |
def __init__( | |
self, | |
dim=1024, | |
depth=8, | |
dim_head=64, | |
heads=16, | |
num_queries=8, | |
embedding_dim=768, | |
output1_dim=768, | |
output2_dim=1280, | |
ff_mult=4, | |
): | |
super().__init__() | |
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
self.proj_in = nn.Linear(embedding_dim, dim) | |
# self.proj_out = nn.Linear(dim, output_dim) | |
self.norm_out = nn.LayerNorm(dim) | |
self.in_dim = dim | |
self.out_dim = output1_dim + output2_dim | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList([ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
FeedForward(dim=dim, mult=ff_mult), | |
])) | |
self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim) | |
self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim) | |
self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim) | |
def forward(self, x): | |
latents = self.latents.repeat(x.size(0), 1, 1) | |
x = self.proj_in(x) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
hidden_embeds = self.norm_out(latents) | |
encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768] | |
encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280] | |
prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048] | |
pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280] | |
return prompt_embeds, pooled_prompt_embeds | |
class ResamplerXLV2(nn.Module): | |
def __init__( | |
self, | |
dim=1024, | |
depth=8, | |
dim_head=64, | |
heads=16, | |
num_queries=8, | |
embedding_dim=768, | |
output1_dim=768, | |
output2_dim=1280, | |
ff_mult=4, | |
normalize=True | |
): | |
super().__init__() | |
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
self.normalize = normalize | |
self.proj_in = nn.Linear(embedding_dim, dim) | |
# self.proj_out = nn.Linear(dim, output_dim) | |
self.norm_out = nn.LayerNorm(dim) | |
self.in_dim = dim | |
self.out_dim = output1_dim + output2_dim | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList([ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
FeedForward(dim=dim, mult=ff_mult), | |
])) | |
self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim) | |
self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim) | |
self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim) | |
def forward(self, x,pooled_text_embeds=None): | |
latents = self.latents.repeat(x.size(0), 1, 1) | |
if self.normalize: | |
x = F.normalize(x) | |
x = self.proj_in(x) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
hidden_embeds = self.norm_out(latents) | |
encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768] | |
encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280] | |
prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048] | |
pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280] | |
return prompt_embeds, pooled_prompt_embeds | |
class ResamplerXLIdentity(nn.Module): | |
def __init__(self) -> None: | |
super().__init__() | |
def forward(self, x, pooled_text_embeds=None): | |
return x, pooled_text_embeds | |
if __name__ == '__main__': | |
image_proj_model = Resampler(dim=1024, | |
depth=4, | |
dim_head=64, | |
heads=12, | |
num_queries=1024, | |
embedding_dim=1024, | |
output_dim=1024, | |
ff_mult=4) | |
numel = 0 | |
for name, param in image_proj_model.named_parameters(): | |
numel += param.numel() | |
print(f'Total params: {numel}') |