praeclarumjj3's picture
:zap: add code
9fa3d89
raw
history blame
12.2 kB
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class AttentionPool2d(nn.Module):
def __init__(self, seq_len: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(seq_len + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x, return_all_tokens=False):
# x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = x.permute(1, 0, 2) # (N(HW)C) => (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(query=x,
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False)
if return_all_tokens:
return x
else:
return x[0]
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.in_dim = dim
self.out_dim = output_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
output_embeds = self.norm_out(latents)
return output_embeds
class TaskTokenResampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
num_queries=8,
heads=16,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
):
super().__init__()
# self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
# self.task_w = nn.Parameter(torch.tensor(0.0))
self.proj_in = nn.Linear(embedding_dim, dim)
self.num_queries = num_queries
self.dim = dim
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.in_dim = dim
self.out_dim = output_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
def forward(self, x, latents):
if latents is None:
latents = torch.zeros(x.size[0], self.num_queries, self.dim)
else:
if latents.shape[1] != self.num_queries:
if self.num_queries > 1 and self.num_queries % latents.shape[1] == 0:
n = latents.shape[1]
latents = latents.repeat(1, self.num_queries // n, 1)
else:
latents = latents.mean(dim=1, keepdim=True).repeat(1, self.num_queries, 1)
latents = self.proj_in(latents)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
output_embeds = self.norm_out(latents)
return output_embeds
class ResamplerXL(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output1_dim=768,
output2_dim=1280,
ff_mult=4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
# self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(dim)
self.in_dim = dim
self.out_dim = output1_dim + output2_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim)
self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim)
self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim)
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
hidden_embeds = self.norm_out(latents)
encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768]
encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280]
prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048]
pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280]
return prompt_embeds, pooled_prompt_embeds
class ResamplerXLV2(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output1_dim=768,
output2_dim=1280,
ff_mult=4,
normalize=True
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.normalize = normalize
self.proj_in = nn.Linear(embedding_dim, dim)
# self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(dim)
self.in_dim = dim
self.out_dim = output1_dim + output2_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim)
self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim)
self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim)
def forward(self, x,pooled_text_embeds=None):
latents = self.latents.repeat(x.size(0), 1, 1)
if self.normalize:
x = F.normalize(x)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
hidden_embeds = self.norm_out(latents)
encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768]
encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280]
prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048]
pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280]
return prompt_embeds, pooled_prompt_embeds
class ResamplerXLIdentity(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x, pooled_text_embeds=None):
return x, pooled_text_embeds
if __name__ == '__main__':
image_proj_model = Resampler(dim=1024,
depth=4,
dim_head=64,
heads=12,
num_queries=1024,
embedding_dim=1024,
output_dim=1024,
ff_mult=4)
numel = 0
for name, param in image_proj_model.named_parameters():
numel += param.numel()
print(f'Total params: {numel}')