File size: 1,405 Bytes
3b61cce
64fb58a
3b61cce
 
 
64fb58a
3b61cce
64fb58a
 
 
 
3b61cce
 
 
 
 
 
64fb58a
3b61cce
 
 
64fb58a
3b61cce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fb58a
3b61cce
 
 
64fb58a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from __future__ import annotations

import os
import pathlib
import gradio as gr

from prismer_model import run_experts


def create_demo():
    with gr.Row():
        with gr.Column():
            image = gr.Image(label='Input', type='filepath')
            model_name = gr.Dropdown(label='Model', choices=['prismer_base'], value='prismer_base')
            run_button = gr.Button('Run')
        with gr.Column(scale=1.5):
            caption = gr.Text(label='Caption')
            with gr.Row():
                depth = gr.Image(label='Depth')
                edge = gr.Image(label='Edge')
                normals = gr.Image(label='Normals')
            with gr.Row():
                segmentation = gr.Image(label='Segmentation')
                object_detection = gr.Image(label='Object Detection')
                ocr = gr.Image(label='OCR Detection')

    inputs = [image, model_name]
    outputs = [depth, edge, normals]

    paths = sorted(pathlib.Path('prismer/images').glob('*'))
    examples = [[path.as_posix(), 'prismer_base'] for path in paths]
    gr.Examples(examples=examples,
                inputs=inputs,
                outputs=outputs,
                fn=run_experts,
                cache_examples=os.getenv('SYSTEM') == 'spaces')

    run_button.click(fn=run_experts, inputs=inputs, outputs=outputs)


if __name__ == '__main__':
    demo = create_demo()
    demo.queue().launch()