Spaces:
Sleeping
Sleeping
File size: 1,405 Bytes
3b61cce 64fb58a 3b61cce 64fb58a 3b61cce 64fb58a 3b61cce 64fb58a 3b61cce 64fb58a 3b61cce 64fb58a 3b61cce 64fb58a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from __future__ import annotations
import os
import pathlib
import gradio as gr
from prismer_model import run_experts
def create_demo():
with gr.Row():
with gr.Column():
image = gr.Image(label='Input', type='filepath')
model_name = gr.Dropdown(label='Model', choices=['prismer_base'], value='prismer_base')
run_button = gr.Button('Run')
with gr.Column(scale=1.5):
caption = gr.Text(label='Caption')
with gr.Row():
depth = gr.Image(label='Depth')
edge = gr.Image(label='Edge')
normals = gr.Image(label='Normals')
with gr.Row():
segmentation = gr.Image(label='Segmentation')
object_detection = gr.Image(label='Object Detection')
ocr = gr.Image(label='OCR Detection')
inputs = [image, model_name]
outputs = [depth, edge, normals]
paths = sorted(pathlib.Path('prismer/images').glob('*'))
examples = [[path.as_posix(), 'prismer_base'] for path in paths]
gr.Examples(examples=examples,
inputs=inputs,
outputs=outputs,
fn=run_experts,
cache_examples=os.getenv('SYSTEM') == 'spaces')
run_button.click(fn=run_experts, inputs=inputs, outputs=outputs)
if __name__ == '__main__':
demo = create_demo()
demo.queue().launch()
|