prismer / prismer_model.py
shikunl's picture
Test 3 experts
3b61cce
raw
history blame
2.25 kB
import os
import pathlib
import shlex
import shutil
import subprocess
import sys
import cv2
import torch
from prismer.dataset import create_dataset, create_loader
from prismer.model.prismer_caption import PrismerCaption
repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'prismer'
sys.path.insert(0, submodule_dir.as_posix())
def download_models() -> None:
if not pathlib.Path('prismer/experts/expert_weights/').exists():
subprocess.run(shlex.split(
'python download_checkpoints.py --download_experts=True'), cwd='prismer')
model_names = [
'vqa_prismer_base',
'vqa_prismer_large',
'pretrain_prismer_base',
'pretrain_prismer_large',
]
for model_name in model_names:
if pathlib.Path(f'prismer/logging/{model_name}').exists():
continue
subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer')
def build_deformable_conv() -> None:
subprocess.run(
shlex.split('sh make.sh'),
cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops')
def run_experts(image_path: str) -> tuple[str | None, ...]:
helper_dir = submodule_dir / 'helpers'
shutil.rmtree(helper_dir, ignore_errors=True)
image_dir = helper_dir / 'images'
image_dir.mkdir(parents=True, exist_ok=True)
out_path = image_dir / 'image.jpg'
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
for expert_name in expert_names:
env = os.environ.copy()
if 'PYTHONPATH' in env:
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}'
else:
env['PYTHONPATH'] = submodule_dir.as_posix()
subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'), cwd='prismer', env=env, check=True)
# keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
keys = ['depth', 'edge', 'normal']
results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys]
return results[0].as_posix(), results[1].as_posix(), results[2].as_posix()