Spaces:
Sleeping
Sleeping
import os | |
import pathlib | |
import shlex | |
import shutil | |
import subprocess | |
import sys | |
import cv2 | |
import torch | |
from prismer.dataset import create_dataset, create_loader | |
from prismer.model.prismer_caption import PrismerCaption | |
repo_dir = pathlib.Path(__file__).parent | |
submodule_dir = repo_dir / 'prismer' | |
sys.path.insert(0, submodule_dir.as_posix()) | |
def download_models() -> None: | |
if not pathlib.Path('prismer/experts/expert_weights/').exists(): | |
subprocess.run(shlex.split( | |
'python download_checkpoints.py --download_experts=True'), cwd='prismer') | |
model_names = [ | |
'vqa_prismer_base', | |
'vqa_prismer_large', | |
'pretrain_prismer_base', | |
'pretrain_prismer_large', | |
] | |
for model_name in model_names: | |
if pathlib.Path(f'prismer/logging/{model_name}').exists(): | |
continue | |
subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer') | |
def build_deformable_conv() -> None: | |
subprocess.run( | |
shlex.split('sh make.sh'), | |
cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops') | |
def run_experts(image_path: str) -> tuple[str | None, ...]: | |
helper_dir = submodule_dir / 'helpers' | |
shutil.rmtree(helper_dir, ignore_errors=True) | |
image_dir = helper_dir / 'images' | |
image_dir.mkdir(parents=True, exist_ok=True) | |
out_path = image_dir / 'image.jpg' | |
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path)) | |
expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation'] | |
for expert_name in expert_names: | |
env = os.environ.copy() | |
if 'PYTHONPATH' in env: | |
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}' | |
else: | |
env['PYTHONPATH'] = submodule_dir.as_posix() | |
subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'), cwd='prismer', env=env, check=True) | |
# keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection'] | |
keys = ['depth', 'edge', 'normal'] | |
results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys] | |
return results[0].as_posix(), results[1].as_posix(), results[2].as_posix() | |