Spaces:
Runtime error
Runtime error
# Load model directly | |
import streamlit as st | |
from peft import AutoPeftModelForCausalLM | |
from transformers import AutoTokenizer | |
model = AutoPeftModelForCausalLM.from_pretrained( | |
"shivam9980/mistral-7b-news", # YOUR MODEL YOU USED FOR TRAINING | |
load_in_4bit = True,) | |
tokenizer = AutoTokenizer.from_pretrained("shivam9980/mistral-7b-news") | |
# alpaca_prompt = You MUST copy from above! | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
{}""" | |
content = st.text_input('Content') | |
inputs = tokenizer( | |
[ | |
alpaca_prompt.format( | |
"The following passage is content from a news report. Please summarize this passage in one sentence or less.", # instruction | |
content, # input | |
"", # output - leave this blank for generation! | |
) | |
], return_tensors = "pt").to("cuda") | |
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) | |
results= tokenizer.batch_decode(outputs) | |
out = results[0].split('\n')[-1] | |
st.text_area(label='Headline',value=out[:len(out)-4]) | |