Spaces:
Running
on
L4
Running
on
L4
import spaces | |
import gradio as gr | |
from gradio_molecule3d import Molecule3D | |
from gradio_cofoldinginput import CofoldingInput | |
import os | |
import re | |
import urllib.request | |
import yaml | |
from msa import run_mmseqs2 | |
CCD_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/ccd.pkl" | |
MODEL_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/boltz1.ckpt" | |
cache = "/home/user/.boltz" | |
os.makedirs(cache) | |
ccd = f"{cache}/ccd.pkl" | |
if not os.path.exists(ccd): | |
print( | |
f"Downloading the CCD dictionary to {ccd}. You may " | |
) | |
urllib.request.urlretrieve(CCD_URL, str(ccd)) | |
# Download model | |
model =f"{cache}/boltz1.ckpt" | |
if not os.path.exists(model): | |
print( | |
f"Downloading the model weights to {model}" | |
) | |
urllib.request.urlretrieve(MODEL_URL, str(model)) | |
def predict(jobname, inputs, recycling_steps, sampling_steps, diffusion_samples): | |
jobname = re.sub(r'[<>:"/\\|?*]', '_', jobname) | |
os.makedirs(jobname) | |
"""format Gradio Component: | |
# {"chains": [ | |
# { | |
# "class": "DNA", | |
# "sequence": "ATGCGT", | |
# "chain": "A" | |
# } | |
# ], "covMods":[] | |
# } | |
""" | |
sequences_for_msa = [] | |
output = { | |
"sequences": [] | |
} | |
for chain in inputs["chains"]: | |
entity_type = chain["class"].lower() | |
sequence_data = { | |
entity_type: { | |
"id": chain["chain"], | |
} | |
} | |
if entity_type in ["protein", "dna", "rna"]: | |
sequence_data[entity_type]["sequence"] = chain["sequence"] | |
if entity_type == "protein": | |
sequences_for_msa.append(chain["sequence"]) | |
sequence_data[entity_type]["msa"] = f"{jobname}/msa.a3m" | |
if entity_type == "ligand": | |
if "sdf" in chain.keys(): | |
raise gr.Error("Sorry no SDF support yet") | |
if "name" in chain.keys(): | |
sequence_data[entity_type]["ccd"] = chain["name"] | |
if "smiles" in chain.keys(): | |
sequence_data[entity_type]["smiles"] = chain["smiles"] | |
if len(inputs["covMods"])>0: | |
raise gr.Error("Sorry, covMods not supported yet. Coming soon. ") | |
output["sequences"].append(sequence_data) | |
# Convert the output to YAML | |
yaml_file_path = f"{jobname}/{jobname}.yaml" | |
# Write the YAML output to the file | |
with open(yaml_file_path, "w") as file: | |
yaml.dump(output, file, sort_keys=False, default_flow_style=False) | |
os.system(f"cat {yaml_file_path}") | |
a3m_lines_mmseqs2 = run_mmseqs2( | |
sequences_for_msa, | |
"./", | |
use_templates=False, | |
) | |
with open(f"{jobname}/msa.a3m", "w+") as fp: | |
fp.writelines(a3m_lines_mmseqs2) | |
os.system(f"boltz predict {jobname}/{jobname}.yaml --out_dir {jobname} --recycling_steps {recycling_steps} --sampling_steps {sampling_steps} --diffusion_samples {diffusion_samples} --override --output_format pdb") | |
print(os.listdir(jobname)) | |
print(os.listdir(f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/")) | |
return f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/{jobname}_model_0.pdb" | |
with gr.Blocks() as blocks: | |
gr.Markdown("# Boltz-1") | |
gr.Markdown("""Open GUI for running [Boltz-1 model](https://github.com/jwohlwend/boltz/) <br> | |
Key components: | |
- MMSeqs2 Webserver Mirdita et al. | |
- Boltz-1 Model Wohlwend et al. | |
- Gradio Custom Components Molecule3D/Cofolding Input Dürr S. | |
- 3dmol.js Rego & Koes | |
Note: This is an alpha: Some things like covalent modifications or using sdf files don't work yet. You can a Docker image of this on your local infrastructure easily using: | |
`docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/simonduerr-boltz-1:latest python app.py` | |
""") | |
with gr.Tab("Main"): | |
jobname = gr.Textbox(label="Jobname") | |
inp = CofoldingInput(label="Input") | |
out = Molecule3D(label="Output") | |
with gr.Tab("Settings"): | |
recycling_steps =gr.Slider(value=3, minimum=0, label="Recycling steps") | |
sampling_steps = gr.Slider(value=200, minimum=0, label="Sampling steps") | |
diffusion_samples = gr.Slider(value=1, label="Diffusion samples") | |
btn = gr.Button("predict") | |
btn.click(fn=predict, inputs=[jobname,inp, recycling_steps, sampling_steps, diffusion_samples], outputs=[out], api_name="predict") | |
blocks.launch(ssr_mode=False) |