File size: 10,438 Bytes
948429b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import torch
import copy
import torch.nn.functional as F
import numpy as np


class ScoreParams:

    def __init__(self, gap, match, mismatch):
        self.gap = gap
        self.match = match
        self.mismatch = mismatch

    def mis_match_char(self, x, y):
        if x != y:
            return self.mismatch
        else:
            return self.match
        
    
def get_matrix(size_x, size_y, gap):
    matrix = []
    for i in range(len(size_x) + 1):
        sub_matrix = []
        for j in range(len(size_y) + 1):
            sub_matrix.append(0)
        matrix.append(sub_matrix)
    for j in range(1, len(size_y) + 1):
        matrix[0][j] = j*gap
    for i in range(1, len(size_x) + 1):
        matrix[i][0] = i*gap
    return matrix


def get_matrix(size_x, size_y, gap):
    matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
    matrix[0, 1:] = (np.arange(size_y) + 1) * gap
    matrix[1:, 0] = (np.arange(size_x) + 1) * gap
    return matrix


def get_traceback_matrix(size_x, size_y):
    matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
    matrix[0, 1:] = 1
    matrix[1:, 0] = 2
    matrix[0, 0] = 4
    return matrix


def global_align(x, y, score):
    matrix = get_matrix(len(x), len(y), score.gap)
    trace_back = get_traceback_matrix(len(x), len(y))
    for i in range(1, len(x) + 1):
        for j in range(1, len(y) + 1):
            left = matrix[i, j - 1] + score.gap
            up = matrix[i - 1, j] + score.gap
            diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
            matrix[i, j] = max(left, up, diag)
            if matrix[i, j] == left:
                trace_back[i, j] = 1
            elif matrix[i, j] == up:
                trace_back[i, j] = 2
            else:
                trace_back[i, j] = 3
    return matrix, trace_back


def get_aligned_sequences(x, y, trace_back):
    x_seq = []
    y_seq = []
    i = len(x)
    j = len(y)
    mapper_y_to_x = []
    while i > 0 or j > 0:
        if trace_back[i, j] == 3:
            x_seq.append(x[i-1])
            y_seq.append(y[j-1])
            i = i-1
            j = j-1
            mapper_y_to_x.append((j, i))
        elif trace_back[i][j] == 1:
            x_seq.append('-')
            y_seq.append(y[j-1])
            j = j-1
            mapper_y_to_x.append((j, -1))
        elif trace_back[i][j] == 2:
            x_seq.append(x[i-1])
            y_seq.append('-')
            i = i-1
        elif trace_back[i][j] == 4:
            break
    mapper_y_to_x.reverse()
    return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)


def get_mapper(x: str, y: str, specifier, tokenizer, encoder, device, max_len=77):
    locol_prompt, mutual_prompt = specifier
    x_seq = tokenizer.encode(x)
    y_seq = tokenizer.encode(y)
    e_seq = tokenizer.encode(locol_prompt)
    m_seq = tokenizer.encode(mutual_prompt)
    score = ScoreParams(0, 1, -1)
    matrix, trace_back = global_align(x_seq, y_seq, score)
    mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
    alphas = torch.ones(max_len)
    alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
    mapper = torch.zeros(max_len, dtype=torch.int64)
    mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
    mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
    m = copy.deepcopy(alphas)
    alpha_e = torch.zeros_like(alphas)
    alpha_m = torch.zeros_like(alphas)
    
    # print("mapper of")
    # print("<begin> "+x+" <end>")
    # print("<begin> "+y+" <end>")
    # print(mapper[:len(y_seq)])
    # print(alphas[:len(y_seq)])

    x = tokenizer(
            x,
            padding="max_length",
            max_length=max_len,
            truncation=True,
            return_tensors="pt",
        ).input_ids.to(device)
    y = tokenizer(
            y,
            padding="max_length",
            max_length=max_len,
            truncation=True,
            return_tensors="pt",
        ).input_ids.to(device)

    x_latent = encoder(x)[0].squeeze(0)
    y_latent = encoder(y)[0].squeeze(0)
    i = 0
    while i<len(y_seq):
        start = None
        if alphas[i] == 0:
            start = i
            while alphas[i] == 0:
                i += 1
            max_sim = float('-inf')
            max_s = None
            max_t = None
            for i_target in range(start, i):
                for i_source in range(mapper[start-1]+1, mapper[i]):
                    sim = F.cosine_similarity(x_latent[i_target], y_latent[i_source], dim=0)
                    if sim > max_sim:
                        max_sim = sim
                        max_s = i_source
                        max_t = i_target
            if max_s is not None:
                mapper[max_t] = max_s
                alphas[max_t] = 1
                for t in e_seq:
                  if x_seq[max_s] == t:
                    alpha_e[max_t] = 1
        i += 1
        
    # replace_alpha, replace_mapper = get_replace_inds(x_seq, y_seq, m_seq, m_seq)
    # if replace_mapper != []:
    #     mapper[replace_alpha]=torch.tensor(replace_mapper,device=mapper.device)
    #     alpha_m[replace_alpha]=1
    
    i = 1
    j = 1
    while (i < len(y_seq)-1) and (j < len(e_seq)-1):
        found = True
        while e_seq[j] != y_seq[i]:
            i = i + 1
            if i >= len(y_seq)-1:
                print("blend word not found!")
                found = False
                break
                raise ValueError("local prompt not found in target prompt")
        if found:
            alpha_e[i] = 1
        j = j + 1

    i = 1
    j = 1
    while (i < len(y_seq)-1) and (j < len(m_seq)-1):
      while m_seq[j] != y_seq[i]:
        i = i + 1
      if m_seq[j] == x_seq[mapper[i]]:
        alpha_m[i] = 1
        j = j + 1
      else:
        raise ValueError("mutual prompt not found in target prompt")

    # print("fixed mapper:")
    # print(mapper[:len(y_seq)])
    # print(alphas[:len(y_seq)])
    # print(m[:len(y_seq)])
    # print(alpha_e[:len(y_seq)])
    # print(alpha_m[:len(y_seq)])
    return mapper, alphas, m, alpha_e, alpha_m


def get_refinement_mapper(prompts, specifiers, tokenizer, encoder, device, max_len=77):
    x_seq = prompts[0]
    mappers, alphas, ms, alpha_objs, alpha_descs = [], [], [], [], []
    for i in range(1, len(prompts)):
        mapper, alpha, m, alpha_obj, alpha_desc = get_mapper(x_seq, prompts[i], specifiers[i-1], tokenizer, encoder, device, max_len)
        mappers.append(mapper)
        alphas.append(alpha)
        ms.append(m)
        alpha_objs.append(alpha_obj)
        alpha_descs.append(alpha_desc)
    return torch.stack(mappers), torch.stack(alphas), torch.stack(ms),  torch.stack(alpha_objs), torch.stack(alpha_descs)


def get_replace_inds(x_seq,y_seq,source_replace_seq,target_replace_seq):
    replace_mapper=[]
    replace_alpha=[]
    source_found=False
    source_match,target_match=[],[]
    for j in range(len(x_seq)):
        found=True
        for i in range(1,len(source_replace_seq)-1):
            if x_seq[j+i-1]!=source_replace_seq[i]:
                found=False
                break
        if found:
            source_found=True
            for i in range(1,len(source_replace_seq)-1): 
                source_match.append(j+i-1)
    for j in range(len(y_seq)):
        found=True
        for i in range(1,len(target_replace_seq)-1):
            if y_seq[j+i-1]!=target_replace_seq[i]:
                found=False
                break
        if found:
            for i in range(1,len(source_replace_seq)-1): 
                target_match.append(j+i-1)
    if not source_found:
        raise ValueError("replacing object not found in prompt")
    if (len(source_match)!=len(target_match)):
        raise ValueError(f"the replacement word number doesn't match for word {i}!")
    replace_alpha+=source_match
    replace_mapper+=target_match
    return replace_alpha,replace_mapper
    
    
    
def get_word_inds(text: str, word_place: int, tokenizer):
    split_text = text.split(" ")
    if type(word_place) is str:
        word_place = [i for i, word in enumerate(split_text) if word_place == word]
    elif type(word_place) is int:
        word_place = [word_place]
    out = []
    if len(word_place) > 0:
        words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
        cur_len, ptr = 0, 0

        for i in range(len(words_encode)):
            cur_len += len(words_encode[i])
            if ptr in word_place:
                out.append(i + 1)
            if cur_len >= len(split_text[ptr]):
                ptr += 1
                cur_len = 0
    return np.array(out)


def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
    words_x = x.split(' ')
    words_y = y.split(' ')
    if len(words_x) != len(words_y):
        raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
                         f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
    inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
    inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
    inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
    mapper = np.zeros((max_len, max_len))
    i = j = 0
    cur_inds = 0
    while i < max_len and j < max_len:
        if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
            inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
            if len(inds_source_) == len(inds_target_):
                mapper[inds_source_, inds_target_] = 1
            else:
                ratio = 1 / len(inds_target_)
                for i_t in inds_target_:
                    mapper[inds_source_, i_t] = ratio
            cur_inds += 1
            i += len(inds_source_)
            j += len(inds_target_)
        elif cur_inds < len(inds_source):
            mapper[i, j] = 1
            i += 1
            j += 1
        else:
            mapper[j, j] = 1
            i += 1
            j += 1

    return torch.from_numpy(mapper).float()



def get_replacement_mapper(prompts, tokenizer, max_len=77):
    x_seq = prompts[0]
    mappers = []
    for i in range(1, len(prompts)):
        mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
        mappers.append(mapper)
    return torch.stack(mappers)