File size: 7,215 Bytes
c67f441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24e990
c67f441
 
 
 
 
 
 
 
 
d0d9327
c67f441
 
 
 
 
 
 
d0d9327
 
 
c67f441
d0d9327
 
 
 
c67f441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
919c608
 
f24e990
919c608
c67f441
919c608
 
 
 
 
 
 
 
 
 
 
 
 
c67f441
e2d7cf7
f1bd711
1df4954
 
 
f1bd711
9c35bc0
c67f441
3faad04
c67f441
a4cceba
 
9c35bc0
 
3faad04
1e73bf4
 
c67f441
 
 
e665ead
c67f441
 
 
 
 
38072fe
1124071
 
95e6b77
38072fe
 
2e58a93
 
c9f38e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from __future__ import unicode_literals
import re
import unicodedata
import torch
import streamlit as st
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
import numpy as np
import scipy.spatial
from transformers import BertJapaneseTokenizer, BertModel
import pyminizip


def unicode_normalize(cls, s):
    pt = re.compile("([{}]+)".format(cls))

    def norm(c):
        return unicodedata.normalize("NFKC", c) if pt.match(c) else c

    s = "".join(norm(x) for x in re.split(pt, s))
    s = re.sub("-", "-", s)
    return s


def remove_extra_spaces(s):
    s = re.sub("[  ]+", " ", s)
    blocks = "".join(
        (
            "\u4E00-\u9FFF",  # CJK UNIFIED IDEOGRAPHS
            "\u3040-\u309F",  # HIRAGANA
            "\u30A0-\u30FF",  # KATAKANA
            "\u3000-\u303F",  # CJK SYMBOLS AND PUNCTUATION
            "\uFF00-\uFFEF",  # HALFWIDTH AND FULLWIDTH FORMS
        )
    )
    basic_latin = "\u0000-\u007F"

    def remove_space_between(cls1, cls2, s):
        p = re.compile("([{}]) ([{}])".format(cls1, cls2))
        while p.search(s):
            s = p.sub(r"\1\2", s)
        return s

    s = remove_space_between(blocks, blocks, s)
    s = remove_space_between(blocks, basic_latin, s)
    s = remove_space_between(basic_latin, blocks, s)
    return s


def normalize_neologd(s):
    s = s.strip()
    s = unicode_normalize("0-9A-Za-z。-゚", s)

    def maketrans(f, t):
        return {ord(x): ord(y) for x, y in zip(f, t)}

    s = re.sub("[˗֊‐‑‒–⁃⁻₋−]+", "-", s)  # normalize hyphens
    s = re.sub("[﹣-ー—―─━ー]+", "ー", s)  # normalize choonpus
    s = re.sub("[~∼∾〜〰~]+", "〜", s)  # normalize tildes (modified by Isao Sonobe)
    s = s.translate(
        maketrans(
            "!\"#$%&'()*+,-./:;<=>?@[¥]^_`{|}~。、・「」",
            "!”#$%&’()*+,-./:;<=>?@[¥]^_`{|}〜。、・「」",
        )
    )

    s = remove_extra_spaces(s)
    s = unicode_normalize("!”#$%&’()*+,-./:;<>?@[¥]^_`{|}〜", s)  # keep =,・,「,」
    s = re.sub("[’]", "'", s)
    s = re.sub("[”]", '"', s)
    s = s.lower()
    return s


def normalize_text(text):
    return normalize_neologd(text)


def normalize_title(title):
    title = title.strip()
    
    match = re.match(r"^「([^」]+)」$", title)
    if match:
        title = match.group(1)

    match = re.match(r"^POP素材「([^」]+)」$", title)
    if match:
        title = match.group(1)
    
    title = re.sub(r"(の?(?:イラスト|イラストの|イラストト|イ子のラスト|イラス|イラスト文字|「イラスト文字」|イラストPOP文字|ペンキ文字|タイトル文字|イラスト・メッセージ|イラスト文字・バナー|キャラクター(たち)?|マーク|アイコン|シルエット|シルエット素材|フレーム(枠)|フレーム|フレーム素材|テンプレート|パターン|パターン素材|ライン素材|コーナー素材|リボン型バナー|評価スタンプ|背景素材))+(\s*([0-90-9]*|その[0-90-9]+))(です。)?", "", title)
    
    title = normalize_text(title)
    
    if title.strip() == "":
        raise ValueError(title)
    
    return title


class SentenceBertJapanese:
    def __init__(self, model_name_or_path, device=None):
        self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
        self.model = BertModel.from_pretrained(model_name_or_path)
        self.model.eval()

        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = torch.device(device)
        self.model.to(device)

    def _mean_pooling(self, model_output, attention_mask):
        token_embeddings = model_output[
            0
        ]  # First element of model_output contains all token embeddings
        input_mask_expanded = (
            attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        )
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
            input_mask_expanded.sum(1), min=1e-9
        )

    @torch.no_grad()
    def encode(self, sentences, batch_size=8):
        all_embeddings = []
        iterator = range(0, len(sentences), batch_size)
        for batch_idx in iterator:
            batch = sentences[batch_idx : batch_idx + batch_size]

            encoded_input = self.tokenizer.batch_encode_plus(
                batch, padding="longest", truncation=True, return_tensors="pt"
            ).to(self.device)
            model_output = self.model(**encoded_input)
            sentence_embeddings = self._mean_pooling(
                model_output, encoded_input["attention_mask"]
            ).to("cpu")

            all_embeddings.extend(sentence_embeddings)

        # return torch.stack(all_embeddings).numpy()
        return torch.stack(all_embeddings)


st.title("いらすと検索")
description_text = st.empty()

if "model" not in st.session_state:
    description_text.text("...モデル読み込み中...")
    model = SentenceBertJapanese("sonoisa/sentence-bert-base-ja-mean-tokens")
    st.session_state.model = model

    pyminizip.uncompress(
        "irasuto_items_20210224.pq.zip", st.secrets["ZIP_PASSWORD"], None, 1
    )
    
    df = pq.read_table("irasuto_items_20210224.parquet").to_pandas()
    st.session_state.df = df
    
    sentence_vectors = np.stack(df["sentence_vector"])
    st.session_state.sentence_vectors = sentence_vectors
    
model = st.session_state.model
df = st.session_state.df
sentence_vectors = st.session_state.sentence_vectors

description_text.text("説明文の意味が近い「いらすとや」画像を検索します。\nキーワードを列挙するよりも、自然な文章を入力した方が精度よく検索できます。\n画像は必ずリンク先の「いらすとや」さんのページを開き、そこからダウンロードしてください。")

def clear_result():
    result_text.text("")

prev_query = ""
query_input = st.text_input(label="説明文", value="", on_change=clear_result)

closest_n = st.number_input(label="検索数", min_value=1, value=10, max_value=100) 

search_buttion = st.button("検索")

result_text = st.empty()

if search_buttion or prev_query != query_input:
    query = normalize_text(query_input)
    prev_query = query_input
    query_embedding = model.encode([query]).numpy()

    distances = scipy.spatial.distance.cdist(
        query_embedding, sentence_vectors, metric="cosine"
    )[0]

    results = zip(range(len(distances)), distances)
    results = sorted(results, key=lambda x: x[1])

    md_content = ""
    for i, (idx, distance) in enumerate(results[0:closest_n]):
        page_url = df.iloc[idx]["page"]
        for img_url in df.iloc[idx]["images"]:
            md_content += f'1. <a href="{page_url}" target="_blank" rel="noopener noreferrer"><img src="{img_url}" width="100"></a>'
        md_content += f' [{distance / 2:.4f}: {df.iloc[idx]["description"]}]({page_url})\n'
        
    result_text.markdown(md_content, unsafe_allow_html=True)